SPROC Signal Processor
DATABOOK

STAR—The Signal Processing Company

Section

SPROC Signal Processingc.cc......
Guide To Products ...ccvvvvvvvieiiiiiiiiiiiiiien,
Product Technical Data......................cc.ce..
Applications...............cooooiiii n
Technical Support............c.occoooo
Quality, Testing, Packaging Handling.......... ﬂ

.
Supplementary Information

STAR Semiconductor Corp. Trademarks

SPROC, SPROCboard, SPROCbox, SPROCbuild, SPROCcells, SPROCdrive, SPROCAil,
SPROClab, SPROClink, SPROCsim, SPROCview and “Sketch-and-Realize” are trademarks
of STAR Semiconductor Corp.

Trademarks of Other Corporations

The following trademarks have been mentioned in this Data Book and are credited to their
respective corporations.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation. OrCAD and
DRAFT are registered trademarks of OrCAD Systems Corporation. VIEWlogic and
Workview are registered trademarks of VIEWIlogic Systems, Inc.

Disclaimer Notices and Copyrights

Information furnished by STAR Semiconductor Corp. is believed to be accurate and
reliable. However, no responsibility is assumed by STAR Semiconductor Corp. for its use;
nor for any infringements of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent rights of STAR
Semiconductor Corp.

Preliminary data are intended for guidance purposes in evaluating new products for
equipment design. Such data are shown for types currently being designed for inclusion in
our standard line of commercially available products. No obligations are assumed for
notice of change of these devices. For current information on the status of preliminary data
programs, please contact your local STAR Semiconductor Corp. sales office.

Life Support Policy

Except upon the prior express written approval of STAR Semiconductor Corp., no product
shall be used as a component in any (i) life support device or system or (ii) any device
intended for surgical implantation into the human body.

Copyright© 1991 by STAR Semiconductor Corp.

(All rights reserved.)

Trademark(s) ® Registered

Mareca(s) Registrada(s) Printed in U.S.A. 12/91

Section 1.

Section 2.

Section 3.

Section 4.
Section 5.

Section 6.

Section 7.

DATA BOOK
TABLE OF CONTENTS

SPROC Signal Processing...................c..oeeeeveneeeeeensonnnnn, 1-1
* STAR - The Signal Processing Company
* Introduction to SPROC Technology
- SPROC Architecture
- SPROC-1000 Series of Programmable Signal Processors
- SPROClab Development System
* STAR Technical Support

Guide to Productsoceuvueeiin e 2-1
¢ STAR Product Index
e STAR Product Overview

Product Technical Data....................ccoeeeeeieeic 31
* SPROC-1400 Signal Processors

* SPROCIlab Overview

* System Hardware/Software

e System Operation

Applications,ccoiiiiiiii e 4-1

Technical SUPPOTt...........cccuuiiiiiiiiiiii i 5-1
* Training and Seminar Programs

* Field Technical Specialists

¢ Documentation

Quality, Testing, Packaging/Handling
* Quality and Reliability Information
* Packaging/Package Dimensions

* Handling Information

Supplementary Information.,.................................. 7-1
e Literature

¢ Sales Offices/ Authorized Distributors

¢ Index

Section 1

SPROC Signal Processing

4
[

STAR - The Signal Processing Company

STAR Semiconductor was founded in 1987 by an experienced team of signal
processing experts and integrated circuit designers. Their mission was to develop
and market easy to use, high performance programmable signal processors
complete with support development system hardware and software. This
objective has been achieved. STAR’s integrated circuits and development systems
are now expanding the application of signal processing by delivering long
awaited breakthroughs in performance and ease of use to both analog and digital
designers. The company’s talent and resources are dedicated to continue making
it easier than ever to design and implement high-performance, real-time signal
processing systems.

STAR’s SPROC-1000 series of programmable integrated circuits is the first to
incorporate multiple signal processors on a single chip. The company’s patented
Central Memory Architecture (CMA), optimized for real-time signal processing
applications, provides for concurrent processing of multiple data streams.

STAR’s SPROClab development system delivers the first “Sketch and Realize”
capability to designers of signal processing systems, eliminating manual coding
and reducing time-to-market from months to days. By creating optimized
systems directly from block diagrams, STAR’s unique products let both novice
and experienced DSP users improve the performance of their designs while
dramatically reducing development time and cost.

1-1

o
~
o
9}
®
w
2
3
(e}

|eubis

J0HdS
'} uonodag

Sketch and Specify

<\

USER:
Design Capture

SPROC TECHNOLOGY:
Design
Implementation

Partition, Schedule
and
Generate Code

Load and Run

SPROC “Sketch and Realize” Design Process Flow

1-2

53
2 x
o Qa
o 0
[%2]

SPROC Technology

Typical signal processing applications include tasks with data-dependent
execution time and the ability to interface with other processors.

\
: \
| \
] \
: Analog N Signal Logic
' Interface \ Processing Decision
] ke K
' Converters : Conditioning Control
: \
) \
] \
) \

«—

A Generic Signal Processing Based System

Mixing decision-oriented, data-dependent tasks with computationally intensive,
highly deterministic tasks makes the development of a scheduler both difficult
and inefficient. Separating the schedulers for these activities into signal
processing and logic processing sections simplifies creating the application,
results in a simpler, more flexible, higher performance design, and provides for a
much more powerful development environment.

STAR Semiconductor’s product line has been developed recognizing that
real-time signal processing is very different from logic processing. Based on this
insight, the company invented the SPROC s&gna. processing architecture, which
embodies a rethinking of both signal processing hardware and software
application development tools. SPROC is the world’s first general-purpose

signal-processing solution optimized for real-time applications.

K
c
=2
wn

9
c
"
w
H O
[S]
o
e
a

)

o
=
o
o
0
1%
@
3

Q@

leubis

O0HdS
11 uondag

STAR'’s SPROC technology is fundamentally differentiated from first
generation DSP technology by three factors:

® Ground up rethinking of the processing and data-flow requirements
of real-time signal processing

* Concurrent development of chip architectures and scheduler
techniques designed to support high-level development and
automated partitioning of complex problems to multiple SPROC
chips

* System architecture development fully exploiting the integration
capability and performance of modern semiconductor processing.

SPROC Architecture

The Central Memory Architecture (CMA) in STAR’s SPROC signal processor
product family includes the Central Memory Unit (CMU) and three principal
logic elements: General Signal Processors (GSPs) for computation, input-output
Data Flow Managers (DFMs) to coordinate simultaneous data streams, and
parallel interfaces to external processors.

[=
T o
& pol
5 a
g 3
s ¥
A *

Access Port

Parallel Port tor SPROCIlab

MicroPr’?cessor Bevelopment

Intertace System

The CMU at the center of the device is a multi-ported program and data space.
Unlike first-generation DSP architectures, where interrupts are used to provide

14

concurrent activity, the CMU implements concurrency directly via time multiplex
of memory. Resource access is controlled by allocating time slots to each GSP and
to the I/O unit.

- ST >
o1 a2 a3 o4 o5
T
- |
10T 10T
parallel 70T
P BEERRERR
serial S robe
(T = clock cycle time) borts port > P

CMU Access Allocation

One SPROC signal processor machine cycle is multiplexed into five CMU access
slots. Each slot is equivalent to one master clock cycle.

Slots o1 through o4 are used by the four GSPs. During these time slots the
processor can either read from or write to the CMU.

Slot @5 is the I/O slot, which is further divided. The parallel port is given this slot
half of the time (10T), and thus can support signal or parametric data flow up to
1/10T words/sec without interrupting the processing on any of the GSPs. The
other half of the time, the slot is further multiplexed into seven additional slots,
each of which can read/write the CMU at 70T intervals. These seven additional
time slots are used by the various serial ports, the access port, and a real-time
probe.

The first implementation of the SPROC-1000 series contains four on-chip general
signal processors optimized for real-time analog applications. The GSPs can be
used either individually or collectively, depending on the applications’s
requirements. The CMU enables these 24-bit fixed-point processors to execute
signal processing code concurrently and without interruption. This capability
results in a major performance enhancement that improves with increasing
sample rate.

1-5

i
c
o
)
o
wn

o]
o]
[od
a
[

o
__C
< 0
c u
o Q
=
N o

o
a

o
<
o
I}
0
[
@2
3
5]

jeubis

004dS
11 uonoag

The Data Flow Managers (DFMs) coordinate the

filing of input and output data

into or out of the CMU and handle I/O tasks with no impact on GSP
performance. Because the CMU is a time division multiplexed (TDM) multi-
ported memory, this activity can take place in parallel with the signal processing,

enabling the device to service high sample rates

with high efficiency. The DFMs

set up either double buffers or vector FIFOs in the CMU. Direct hardware
support of concurrency simplifies generation of code beyond what is possible

with first-generation DSP architectures.

The parallel interface to other processors also op

timizes the SPROC device for

concurrent, real-time operations. Unlike first-generation DSP architectures,

STAR's central memory architecture enables fast

and straightforward

communication with external logic processors. The architecture allows an
external logic processor to read or write any part of the CMU completely

asynchronously with any other ongoing activity.

The SPROC device provides all

the necessary interfacing signals to the supported logic processors, as well as any
necessary word width adjustments required to interface with external logic

processors.
—I reemmms '
i N 1 bemmmme
SPROC [' SPROC
-t Lo ..a : : -----
Serial channels N
to A/D, D/A .--_T---.
converters .
Read/Write to
the SPROC is
identical to uP RAM

standard memory

A

Scaie the microprocessor
according to the needs of
the logic processing task.

/

Store the memory
intensive decision
code.

These elements combine to provide an architecture with hardware support for
concurrency and a memory system that permits easy and efficient coupling of the
SPROC unit to other processor systems. The result is a technology that is

optimized for a vast array of real-time applications easily programmable with
high-level tools.

The SPROC-1000 Series of Programmable
Signal Processors

The SPROC-1000 series of programmable, single-chip DSPs offers a variety of
multiprocessor, memory, and interface configurations to suit applications with
diverse function, performance, and cost requirements. Based on the unique
central memory architecture, SPROC chips provide complete, integrated
implementation of signal-processing subsystems.

Family G Numb?r of On-chip
eneral Signal Processors
SPROC-1400 4
SPROC-1200 2
SPROC-1100 1

1-7

e
c
o
©
o
2]

O
o}
[oa
a
v

Signal
Processing

Section 1:
SPROC

Signal
Processing

1-8

SPROC-1400 Family

The SPROC-1400 is the first in a family of easy-to-use high-performance digital
signal processors for analog and digital applications. The chip contains all the
necessary elements for efficient signal-processing system implementation. It is
supported by the SPROClab development system, which provides direct
transformation of designs from block diagrams to production-ready systems.
SPROC processors are ideally suited for signal conditioning, detection,
measurement, generation, and control applications. A single SPROC chip has the
signal processing power of several conventional DSPs or as many as hundreds of
analog op amps.

Features:
[]

Self-contained single-chip signal processor

Multiprocessor architecture optimized for real-time performance and
ease-of-programming

Real-time signal bandwidths to 250 kHz

Direct transformation from block diagrams to production-ready
systems

24-bit fixed-point architecture with 56-bit accumulation giving 144
dB precision and dynamic range

On-chip RAM for implementing adaptive and self-calibrating
systems

Initialization from 16K byte file in microprocessor or boot PROM
Up to 64K external RAM accessible
Four serial ports configurable for 8-, 12-, 16-, or 24-bit data

24-bit parallel port supporting Motorola and Intel microprocessor
byte order interface protocols

Software-directed built-in probe acting as an on-chip test point
On-chip or external clock
Fully static CMOS technology
Single 5-volt power supply
1-9

2
c
2
°
4
[0}

2
Q3
Oc o
<58
n® o
a

Section 1:
SPROC

1-10

SPROCIab Development System

The SPROClab development system is a graphical programming environment for
the SPROC-1000 series of high-performance digital signal processors. SPROClab
supports STAR Semiconductor’s unique “Sketch and Realize” approach to DSP
design. With SPROClab, designers automatically transform signal-flow diagrams
into production-ready high-performance signal-processing systems. SPROClab
combines familiar analog system block diagram notation and interactive
debugging capability with the power and flexibility of the programmable SPROC
chip.

Key features include:

e Easy-to-use signal-flow diagram editor supporting a powerful
graphical programming approach

* Library of commonly-used analog and signal-processing function
blocks

* Powerful filter design tools

¢ Fully automatic scheduling and code generation, from signal-flow
diagrams to SPROC executable code

* Interactive debugging tools to modify system parameters and
observe internal signals - - while a design runs on the SPROC chip

e Automatic symbol table generation for easy interfacing with
controlling microprocessors

¢ Interface to test equipment and the target system for rapid
prototyping and debugging

* Support for arbitrarily complex designs, including multiple SPROC
chip implementations

¢ PCand MS-DOS platform

Programming Basics

SPROClab’s unique “Sketch and Realize” design capability is made possible by
the SPROC proprietary multiprocessor architecture. SPROC avoids the trade-off
between performance and ease-of-programming plaguing traditional DSP
architectures. SPROC-based designs are automatically partitioned among

1-11

=
c
Q
©
@
[72]

)
o}
[ou
a.
%

[e)
_ c
o n
c w
> 8
(201

2
a

D

o
=
[}
(o]
@
(%3
Q.
=
@

@
[{e]
E
=2

004ddS
;1 uon23sg

multiple internal processors. Concurrent computations are scheduled for optimal
run-time performance. The SPROClab tools take advantage of the unique SPROC
architecture to provide the greatest possible degree of end-product performance,
development productivity, and design flexibility.

Although SPROC chips can be hand coded, this option usually does not yield
significant performance improvement over graphical, block-diagram
programming. However, designers who wish to specify custom design elements
can create new function blocks and add them to the SPROCcells function library.

SPROClab incorporates many unique features to simplify and speed the
development of complex systems. For example, all parameters can be calibrated
while the SPROC chip is running in either the evaluation environment or the
target system. The SPROC chip includes a software-directed probe for the
observation of internal signals on an oscilloscope or other test instruments, under
SPROClIab control.

The SPROClab development process includes four phases:

O—]
il

|
|
phase 1 | phase 2
Signal-flo
iagramW : SPFlogI
Sketch & Schedule executable
Specify _|_'> & Link code
Debug & Calibrate
refine

DBBAM aAubamabian
TrRnvwe auwviniauvn

(5 minutes typically) i

1-12

Documentation

In addition to this Data Book, the following technical literature is delivered with
every SPROClab development system:

* SPROCIab Development SystemUser’s Guide

SPROClab Development System Unpacking and Installation Guide
* SPROCcells Function Library Reference Manual

* SPROClink Microprocessor Interface Reference Manual

* SPROCdrive Interface Reference Manual

® SPROCbox Interface Unit Reference Manual

* SPROCboard Evaluation Board Reference Manual

* SPROC Programmable Signal Processor Data Sheet

* SPROC Description Language Reference Manual

Software Updates

STAR Semiconductor is continuing to improve the SPROClab development
system software, and new versions are released several times per year. Updates
are provided free of charge during the first year after purchase, provided the user
returns the registration card. After the first year, users are encouraged to purchase
a Software Maintenance Agreement to continue to receive software updates.

Field Technical Specialists

STAR Semiconductor provides local technical support to customers through a
network of Field Technical Specialists (FTSs). For the name and phone number of
the nearest STAR FTS, call one of the sales offices listed in Section 7, Supplementary
Information, of this Data Book.

=
c
2
i
[0}

(6]
o
c
a
n

o
I —
[7]
c v
2 8
n o

2
a

Section 1:
SPROC
Signal

Processing

1-14

Applications Assistance

STAR Semiconductor provides applications assistance to STAR customers. For
applications assistance, call Applications Engineering on (908) 647-9400.

Bulletin Board

To provide customers with up-to-date information and an immediate response to
questions, STAR Semiconductor provides 24-hour access to an electronic bulletin
board.

STAR Semiconductor Technical Bulletin Board:
(908) 647-2505

The technical bulletin board provides the following services to all registered STAR
customers:

* Read files from the bulletin board

¢ Check current software version numbers

¢ Download files

e Upload files

* Leave messages for other bulletin board users
¢ Read application notes

* Report problems

The technical bulletin board requires the following modem communication
settings:

e 2400 baud
e 8bit

* no parity
e 1stop bit

1-15

o
c
2
©
Q
n

Q
O]
o
a
(%2}

w
§ [
R
c v
o w
= O
0 o

2
a.

Section 2
Guide to Products

Product index

STAR Semiconductor’s first generation of programmable, single-chip signal
processors offers a variety of multiprocessor, memory, and interface
configurations to suit applications with diverse function, performance, and cost
requirements.

The SPROClab development system is a complete suite of hardware, software
tools, and documentation for developing and debugging SPROC-based systems.
SPROCIab allows designers to implement complex signal processing systems in
minutes and debug them with unprecedented ease. SPROClab’s software tools
run on IBM-compatible PCs and communicate with target systems via
SPROClab’s hardware modules.

The following table provides a reference listing of products offered by STAR
Semiconductor. Products include hardware, software, and technical
documentation.

2-1

w
$€8 STAR Semiconductor Product Listing
3=

§°5S

o Product Description Part #
SPROClab Complete graphical programming SDH-1000-00
Development environment for SPROC-1000 series of high-
System performance signal processors.

Includes:

1 SPROCIab Software Kit, SDS-1000-00
1 SPROCbox Interface Unit, SDH-1100-00

1 SPROCboard Evaluation Board,
SDH-1200-00

Security Key, SDH-1400-00

Power Supply, SDH-1300-00

AC Power Cord, SDH-131x-00
Auxiliary Power Cable, SDH-1140-00
Access Port Cable, SDH-1130-00
PC Interface Cable, SDH-1410-00

SPROCIab Development System
Document Set, STI-1000-00

- eh edh A A eh

SPROC-1000 One of a series of single-chip, programmable | see
Series digital signal processors. explanation of
Programmable L . naming
Signal Processor gagihégésc;gcluded in SPROCboard, convention
- : following this
table
SPROCIlab Hardware
SPROCbox Microprocessor-based interface from a SDH-1100-00
Interface Unit SPROC target system to the development
system.

Included in the SPROCIab Development
System, SDH-1000-00.

2-2

STAR Semiconductor Product Listing (Continued)

Product Description Part #
SPROCboard Demonstration board containing interface SDH-1200-00
Evaluation Board converters and logic.
Includes:
1 SPROC-1000 Series Programmable
Signal Processor.
Included in the SPROCIab Development
System, SDH-1000-00.
Security Key Connaects to user’s PC parallel port to enable SDH-1400-00
use of SPROCIab software.
Included in the SPROCIab Development
System, SDH-1000-00.
Power Supply +5V, 12V; 115/230 volts, 50/60 Hz. SDH-1300-00
Included in the SPROCIab Development
System, SDH-1000-00.
AGC Power Cord Connect power supply to AC outlet. part number
Included in the SPROCIlab Development ggg:tn ds on
System, SDH-1000-00. i
North America SDH-1310-00
United Kingdom SDH-1311-00
Germany SDH-1312-00
Auxiliary Power Daisy chain DC power connection from SDH-1140-00

Cable

SPROCbox to SPROCboard.

Included in the SPROClab Development
System, SDH-1000-00.

t'\iog?
-
583
=20
0 3 O
° =
Y

Product Description Part #

e/
-
o
Q
c
(2}
-
o

o1 apIny
12 uoN3g

Access Port Cable | Supports SPROCbox to SPROC chip SDH-1130-00
communications.

Included in the SPROCIab Development
System, SDH-1000-00.

PC Interface Cable | EIA RS-232C/CCITT 0.24 SDH-1410-00

Included in the SPROCIab Development
System, SDH-1000-00.

SPROClab Software

SPROCIab Suite of software tools to support the entire SDS-1000-00
Software Kit SPROC development process.

Includes:
1 SPROCview Graphical Design Interface,

SDS-1100-00

1 SPROCcells Function Library,
SDS-1400-00

1 SPROCHil Filter Design Interface,
SDS-1300-00

SPROCDbuild Utility
SPROCdrive Interface
SPROCIink Microprocessor Interface

SPROCinstall Installation Utility,
SDS-1200-00

Included in the SPROCIab Development
System, SDH-1000-00.

— —h —h A

SPROCview Schematic entry package interface. Supports SDS-1100-00
Graphical Design use of OrCAD schematic entry software.

Interface Included in the SPROCIab Software Kit,
SDS-1000-00.

2-4

STAR Semiconductor Product Listing (Continued)

Product Description Part #
SPROCcslls Library of signal processing functions, with SDS-1400-00
Function Library icons.

Included in the SPROCIab Software Kit,

SDS-1000-00.
SPROCil Filter Custom filter design tool. SDS-1300-00
Design Interface | | iuded in the SPROCIab Software Kit,

SDS-1000-00.
SPROCDbuild Utility | Automatic code generator / scheduler. none

Included in the SPROCIab Software Kit,

SDS-1000-00.
SPROCdrive Loading and debugging tool. none
Interface . .

Included in the SPROCIab Software Kit,

SDS-1000-00.
SPROClIink Software to support embedded system none
Microprocessor development of microprocessor C applications
Interface including the SPROC chip.

Included in the SPROCIab Software Kit,

SDS-1000-00.
SPROCinstall Included in the SPROCIab Software Kit, SDS-1200-00
Installation Utility SDS-1000-00.
Optional SPROCIab Software
SPROCsim Software simulator of SPROC chip. SDS-1500-00
Simulator
VIEWiIogic option Supports schematic entry using VIEWIogic SDS-1120-00
for SPROCview software.

Graphical Design
Interface

2-5

N o
~ 2
Q
e
(8]
g3
»

%]
-
Q
=
bl
o
-
o8

o
R
o
[8
c
23
4

o19pIny
:Z uonoag

STAR Semiconductor Product Listing (Continued)

Product

Description

Part #

SPROCIlab Technical Documentation

SPROClab
Development
System Document
Set

Comprehensive documentation covering all
hardware and software tools in the SPROClab
Development System.

Includes:

1 SPROCIab Development System User's
Guide, UG1000

1 SPROCIlab Development System
Unpacking and Installation Guide, 1G1000

1 SPROCdrive Interface Reference Manual,
SDIR1000

1 SPROCcells Function Library Reference
Manual, CELR1000

1 SPROCIink Microprocessor Interface
Reference Manual, LINR1000

1 SPROC Description Language Reference
Manual, SDLR1000

1 SPROCbox Interface Unit Reference
Manual, [UR1000

1 SPROCboard Evaluation Board

Reference Manual, EBR1000

SPROC Programmable Signal Processor

Data Sheet (number depends on specific

chip)

Included in the SPROCIab Development
System, SDH-1000-00.

-y

STI-1000-00

SPROCIab
Development
System User’s
Guide

Guidelines and tutorials on using all the
software tools in the SPROCIab Development
System.

Included in the SPROCIab Development
System Document Set, STI-1000-00.

UG1000

2-6

STAR Semiconductor Product Listing (Continued)

Product Description Part #
SPROCIab Guidelines and instructions for installing IG1000
Development SPROCIab hardware and software.
System Lbacking | included in the SPROCIab Development
: System Document Set, STI-1000-00.
Guide
SPROCdrive Command reference for the SPROCdrive SDIR1000
Interface software.
Reference Manual Included in the SPROCIab Development
System Document Set, STI-1000-00.
SPROCcells Reference covering all cells in the SPROCcells | CELR1000
Function Library library.
Reference Manual | | ded in the SPROClab Development
System Document Set, STI-1000-00.
SPROCIink Reference covering the SPROCIink software. LINR1000
Microprocessor Included in the SPROCIab Development
Interface System D t Set, STI-1000-00
Reference Manual ystem Locument Sef, 5 11-1000-00.
SPROC Overview and reference covering the SPROC | SDLR1000
Description Description Language (SDL).
Language .
Included in the SPROCIab Development
Reference Manual System Document Set, STI-1000-00.
SPROCbox Reference covering the SPROCbox. IUR1000
g‘;‘f’:;ffc:’&"anual Included in the SPROCIlab Development
System Document Set, STI-1000-00.
SPROCboard Reference covering the SPROCboard. EBR1000

Evaluation Board
Reference Manual

Included in the SPROCIab Development
System Document Set, STI-1000-00.

2-7

&
c
2
©
o
[0}

o
o
o
5
O

@
o
b=}
°
o
2
a

STAR Semiconductor Product Listing (Continued)

»o@

g5 2 Product Description Part #

§°S

o SPROC Technical specification of the SPROC chip. number
Programmable Included in the SPROClab Development depends on
Signal Processor Svstem D t Set. STI-1000-00 the specific
Data Sheet ystem Document Set, S 11-1000-00. chip
SPROCsim Reference covering the SPROCsim software. | SIMR1000
Simulator

Reference Manual

SPROCDbuild Utility | Reference covering the SPROCbuild software. | SBR1000
Reference Manual

SPROC Data Book | Comprehensive overview of STAR DB1000
Semiconductor technology and products.

2-8

Chip Naming: SPROC-1000 Series

SPROC1 X Y Z- A B

l—— Package type (A, B, C, etc.); mil. screening

Speed range (2=20MHz, 4=40MHz, 5=50MHz)

Memory configuration (O=default;
options sequentially assigned 1,2,3,
etc.)

Reserved (RAM version = 0 4;
ROM version = RAM value + 5)

Number of GSPs

Product Overview

STAR Semiconductor produces easy-to-use, high-performance digital signal
processing integrated circuits for analog and digital applications. STAR’s unique
SPROC technology enables the direct transformation of block diagrams to
production-ready signal-processing systems in minutes. SPROC combines an
innovative digital signal processing architecture with powerful development
tools for unprecedented ease of use without sacrificing performance. With
STAR'’s products, both analog designers and experienced DSP users can enhance
the features and performance of their systems while dramatically reducing
development time and cost.

The SPROC signal processing family of products consists of programmable
integrated circuits and a development system including a comprehensive line of
hardware and software.

Q<
c
o
©
<

2}

Products

16-bit Address/Data Bus

o
S €
ga.
®
0O -
@ O

:Z uonoag

COIQICT)hRAOL GSP1 GSP2 GSP3 GSP4

8 RO R R R

16-bit Address PORT Data
<
PARALLEL
PORT L
24-bit Data* |[PROGRAM |
b
<—= l 1KR‘°;": b_tl [PRoBE| .
| X L. e
l D PORT Output
DATA i
'l ram |l &
5
{1k x 24 bit|l &
_ SERIAL =
Serial INPUT ¢ — g = §
Data PORT 0 & SERIAL Serial
OUTPUT —————»lfgt':
PORT 2
_ SERIAL
S;__>;;:' INPUT
PORT 1 | 16-bit Address/
24-bit Data Bus SERIAL | garial
OUTPUT Data
PORT 3

2-10

SPROC-1400 Family

STAR Semiconductor’s SPROC-1400 family chips includes four independent
General Signal Processors (GSPs) with 1k x 24-bit program memory, a shared
Central Memory Unit (CMU) with 1K x 24-bit RAM, and both serial and parallel
1/0 ports. The SPROC-1400 family incorporates a powerful and flexible
mechanism for managing the data and instruction flows between the serial ports,
CMU, and each GSP through 16-bit address and 24-bit data buses.

A SPROC-1400 chip provides two classes of I/O interfaces that are compatible
with the majority of existing microprocessors, memories, and peripheral devices.
The serial interface consists of four independent serial ports - - two input and two
output. Each serial port can operate with its own internal or external clock,
input/output word width, and bit ordering. The parallel port is a single 24-bit,
asynchronous, bidirectional interface. Users can select word widths (up to 24
bits) and byte orderings for data transferred over the parallel port. Through the
parallel port, the SPROC can be dynamically reprogrammed by a microprocessor
while operating in slave mode.

An access port provides the link between the SPROCbox interface unit and the
SPROC-1400 chip. SPROCdrive software allows the user to dynamically modify
system parameter values through the access port for calibration and debugging,
thus furnishing the means to observe and control system function and
performance under various conditions.

2-11

&
c
2
)
o
2]

bS]
o
°
5
O

o
3]
=
©
o]
o
o8

o
X
o
a
c
Q
1%

o} apingy
12 uonoasg

A built-in software-directed signal probe facilitates interactive development and
debugging of SPROC-based systems. The probe circuit steers selected internal
signals to a dedicated output port. Using the SPROCdrive software, designers
can access internal signals for display or measurement.

Multiple interconnected SPROC chips - - with or without a microprocessor or
controller - - can implement arbitrarily complex signal-processing functions.
SPROC-1400 chips are available in several speed ranges, from 20 MHz to 50 MHz,
for real-time bandwidths to 250 kHz.

SPROCIab Development Environment

The SPROCIlab development system is a complete set of hardware and software
tools that you use with your PC to create, test, and debug digital signal
processing designs. It was created to support the development of code for the
SPROC signal processing chip.

The development system provides an interactive design environment that lets
you create processing subsystems in graphical form, as signal-flow diagrams, and
implement those subsystems easily and efficiently on the SPROC chip. Using the
system, you can develop efficient signal processing subsystems without having to
manually write code.

Together with your PC and oscilloscope or other verification equipment, the
development system supports the entire development process, including
interactive debugging and design verification. Once you complete design
development, you can easily include the signal processing subsystem in your
actual application using a SPROC chip and the code generated by the
development system.

2-12

SPROCIab Components

SPROClab consists of software tools and hardware modules that support the
entire SPROC development process. Software tools comprise:

. SPROCview graphical signal-flow editor

¢ SPROCcells function block library

. SPROCAil custom filter design tool

. SPROCbuild fully automatic scheduler

. SPROCdrive loading and debugging tool

Guide to
Products

&
c
Q
©
Q
2]

e SPROClink microprocessor interface
Hardware tools comprise:

J SPROCbox microprocessor-based interface from a SPROC target
system to the development system

* SPROCboard evaluation board, containing a SPROC 1400 chip,
analog interface converters, and logic.

A detailed description of the SPROClab development system is given in
Section 3, Product Technical Data.

Phase 1: Phase 2: Phase 3: Phase 4:
Creationofa | Scheduling Downloading System
signal-flow and linking of | code to the calibration,
diagram SPROC execution debugging,
executable environment and

3PROClab tool code refinement

SPROCview S

>PROCcells S

>PROCAil

’PROCbuild

PROCdrive

PROClink

'PROCbox &

'PROCboard

i@ Software - Hardware

2-13

Section 3

Product Technical Data

Note: Theinformation contained in this section is preliminary and may change without

~

notice. Always consult the most recent version of the appropriate technical
documentation for current information to be used when creating designs for the

SPROC signal processor.

SPROC-1400 Signal Processor

The SPROC-1400 processor is part of the SPROC-1000 series of easy-to-use digital
signal processors. They contain all program memory, data memory, signal logic,
and microprocessor interface logic necessary for efficient system desxgn,

implementation, and test.

General Description

The SPROC-1400 processors use the basic SPROC-1000 series chip design and
include four on-board general signal proceSSOrs (GSPs). Table 3-1 lists the

available SPROC-1400 processors.

Table 3-1. SPRQC—140Q:__DigItaI Signal Processors

Chip Part Number

Maximum Clock
Frequency

SPROC-14xx-5x

50 MHz

Note: An x in the part number indicates “any entry”.
Refer to the explanation of part numbering
conventions provided in the Additional

Specifications section later in this section.

SPROC-1400 processors may be configured in standalone (master) mode, or in
embedded (slave) mode. In slave mode, a SPROC chip may be connected to other

SPROC chips, or to a microprocessor.

-‘
o
o
s
2
o
-

1onpoid
g uondag

Features

Self-contained single chip signal processing subsystems
Optimized multiprocessor architecture
Real-time signal bandwidths up to 250 KHz

24-bit internal precision with 56-bit accumulation

Internally generated clock (up to 50 MHz)
Dynamically reprogrammable on-chip RAM
Four serial ports configurable for 8-, 12-, 16-,
24-bit parallel port configurable for 8-, 16-, or 24-bit data bus widths

Software-directed built-in probe

Fully static CMOS technology
Single 5-volt power suppl

Initialization from 1 Kbyte_; e in microprocessor or external
ROM-based self initialization

Parallel port supports connection to common Motorola or Intel

Microprocessors: .
Stan_cl_—'a'lbne‘ (master) or embedded (slave) operating modes

Dedicated serial port for development system interface

The Central Memory Architecture

The SPROC-1000 series uses a central memory architecture that is optimized for
concurrent processing of complex, interrelated signal flows. At the center of the
architecture is a multi-ported shared data memory called the central memory unit
(CMU). Four general signal processors (GSPs) on the chip perform computation and
provide parallel processing. Input/output data flow managers (DFMs) coordinate

simultaneous data streams. Serial channels interface signals, and parallel
interfaces enable connection to external processors. Special I/O interfaces provide
connections to the SPROClab development system and to the on-chip probe.

Program Memory

(8]
3
©
(e}
s
a

Technical

&
c
o
o
o
[}

(7]
£ 5
[-% Central %
5 Memory
& Unit g
:2 (CMU 5

oy Access Port

Parallel Port for SPROClab

Microprocessor. Development
!nterface System

Figure 3-1. SPROC-1000 Series Central Memory Architecture

This central memorv architecture represents a departure from the single processor
s central memory architecture represen

ISR BT PRINNIT VAR RN St H T PRV SeUs

approach to concurrent processing. Instead of using time division multnplexmg of
the processing unit, through interrupts, the SPROC central memory architecture
uses multiprocessors and time division multiplexing of memory. No interrupts
are necessary to handle multiple data streams.

eleg
|es1uysa |

o
-
]
Q
c
2]
-

w
8
s
=]
@

The Central Memory Unit (CMU)

The CMU is a multi-ported data space. It uses a frame composed of time slots, or
memory access periods, allotted for each GSP and for I/O. The basic frame
represents one SPROC chip machine cycle (five master clock cycles) and includes
five time slots of one master clock cycle each.

Time slots 1 through 4 are used by the GSPs. During time slot 1, GSP.1 can read or
write the CMU; during time slot 2, GSP 2 can read or write the CMU;

nto ght divisions for
ring every other

Time slot 5 is used by I/O operations. It is submultiplexed:
parallel I/O and other I/O operations. One half of the time
machine cycle), time slot 5 is used by the parallel port. Thro
parallel port can support signal or parametric data flo
processing of any of the GSPs. The other half of the time (on machine cycles when
the parallel port does not use slot 5), slot 5 supports one of seven additional
subslot divisions for serial ports, the access port, and the on-chip probe.

1 machine cycle (5 clock cycles) or
“{ GSP'instruction cycle

SLOT 1

SLOT3 | SLOT4 | SLOTS
GSP.{ /0

GSP 3 GSP 4

Figure 3-2. CMU Time Slot Divisions

One machine cycle is equal to one GSP instruction cycle. A GSP instruction cycle
can be determined using the following formula:

1

LD F instructhion
N /

MASTER_CLOCK

3-4

The General Signal Processors (GSPs)

The GSPs are 24-bit fixed-point processors optimized for signal processing
functions and for the SPROC central memory architecture. These processors can
be used either individually or in groups depending on the application's
requirements. The SPROCbuild utility in the SPROClab development system
automatically generates all necessary scheduling and task allocation functions
required for the GSPs. The GSPs execute signal processing code congurrently, and
without interruption.

The Data Flow Managers (DFMs)

)
S
°
2
a

Technical
Data

&
c
o
©
o
wn

with no impact on GSP performance. They communicat
on-chip elements through a 24-bit data bus, and i

processing, enabling the SPROC Chlp to |

efficiency. The DFMs set up either dow ffers or vector FIFOs in the CMU.

I/0 Interfaces

Communication w1th a d with the development system is achieved

The parallel port allows an external processor to read or write any part of the
CMU completely asynchronously from any other on-chip activity. The SPROC
chip provides all the necessary interfacing signals to the supported processor, as
well as the necessary translation from the word width within the SPROC chip to
that of the external processor.

The access port is a custom I/O port that provides connection to the SPROClab
development system.
Other Elements

Other circuitry, not shown in Figure 3-1, handles the software-directed real-time
probe and process scheduling activity.

Functional Description

Overview

The SPROC-1400 chip is a general purpose signal processing chip with internal
parallel-processing resources. Its architecture contains four independent general
signal processors (GSPs), a shared central memory unit (CMU) with 1K of 24-bit
RAM data memory and 1K of 24-bit code memory, and both serial an
1/0 ports. Control and status registers are memory mapped in

2o
I}

T g
3

2 c
o o0
QO -

1€ uonoag

hat supports a master
clock rate of up to 50 MHz. With its optimized are e and 40 MIPS

performance potential, the SPROC-1400 chi

Figure 3-3 shows the functional amt of the SPROC-1400 chip.

3-6

CONTROL
ROM

ARDRES%15q

GSP1

GSP3

GSP4

P

R R R

.\mﬁmvgmmm@

BUSGRANT |
R *
D S EsEEEE——— 2
DATA[23.0] %‘ ATXSTR
EADDRESS]1:q)| PARALLEL _ §
GPI3:0] PORT | |PROGRAM | 3 PROBCLK
DE[2:0} || ram § L
5] 1K x'24 bit.
TS[3:0 " | [IRX 11 PROBE
%_RL-_J_. S —: PROBDATA
BALLEE— : DATA' PORT ——*
S opam |14
SNCPULSI[0] i FHak x 24 bit ; PROBSTROB
SRXCLK[0 SERIAL -4 &
SRXD[0] INPUT £
SRXSTROB[0] | PORTO f §
- SNCPULSOI]
SNCPULSI[1] SERIAL TXCL
SRXCLK[1] SERIAL OUTPUT | STXDIO
SRXD[1] INPUT PORT2 | STXSTROBIO
SRXSTROBI1] PORT 1 Address/Data Bus
SNCPULSO(]
EXTCLK SERIAL | STXCLK(1]
EXTINTBCLK OUTPUT | STXD[1
gﬁ——’ CLOCK PORT3 | STXSTROB(]]
SELB SELECT
H o

ot A

SCeLy

COMPUTE[3:0
CRESE

2|

S

Figure 3-3. SPROC-1400 Chip Functional Diagram

3-7

)
c
j
I3
@
o

-3
Qo
oc
& £
= 9
a ©
—

-
o
o
b
3
o
=8

jonpoid
1 uonoag

A SPROC-1400 chip provides both serial and parallel I/O interfaces, designed to
be compatible with the majority of existing microprocessors, memories, and
peripheral devices.

The serial interface has a capacity of four serial ports - two input and two output.
Each serial port can operate independently with its own internal or external clock,
input/output word width, and bit ordering.

The parallel port is a single 8-, 16-, or 24-bit, asynchronous, bidirectia
Data can be transferred over the parallel port in dynamically
widths and byte orderings. Through the parallel port, the SP}
dynamically reprogrammed by a host microprocessor while:

mode.

al interface.

A special serial interface called the access port is used b. y the
unit to communicate with the SPROC chip f_rom the development system. The
development system’s SPROCdrive interfag

dynamically modify system parameter
debugging, thus furnishing the meang
various conditions.

________ des an on-chip signal probe to aid in the development

and debugging of SPROC-based designs. Under control of the SPROCdrive
interface software, ny internal signal may be accessed for display or
measurement.

Clock Selection

The master clock can either be externally supplied or internally generated, as
governed by the EXTINTBCLK input.

3-8

External Clock

Configure an external clock by setting the EXTINTBCLK input HIGH and
connecting the external clock as an input to the EXTCLK pin. The frequency of the
external clock may not exceed the maximum clock frequency supported by the
SPROC-1400 chip, as indicated by the chip part number. Table 3-2 lists the
maximum master clock frequencies for SPROC-1400 chips.

Table 3-2. SPROC-1400 Chip Frequencies

b=
Maximum Clock _ s3¢%2
Chip Part Number Frequency (MHz) s 3 § S
SPROC-14xx-5x 50

Note: An x in the part number indicéié'gfahgiéntry'.
Refer to the explanation of part numbering

Specifications section later in‘this section.

Internal Clock

Configure an internally genggjatéai masteér clock by setting the EXTINTBCLK input
LOW. :

The SELA, SELB, and SELC inputs can be used to select one of several frequencies
for the internally generated master clock. Table 3-3 lists the frequency selections
obtained for the various input settings.

-
(1]
(2]
¥
3
(2]
L

1onpoid

g uonoas

Table 3-3. Internal Master Clock Frequency Selections

SELA |SELB |SELC |FREQUENCY (nominal) of
INPUT |INPUT [INPUT | SPROC-14xx-5x CHIP

HIGH |HIGH |HIGH |100 MHz*
HIGH |HIGH |LOW |81 MHz*
HIGH |LOW |HIGH |69 MHz"
HIGH |LOW |LOW |60 MHz*
LOW |HIGH [HIGH |50 MHz
LOW |HIGH |LOW
LOW |LOW |HIGH
LOW |LOW |[LOW

* Operation at this speed n

Note: These data are prelimim‘yy“i nly. Actual operation of the SPROC-14xx-5x chip
remains to be characterized.

The Memory Map

The 4K x 24-bit SPROC-1400 chip memory map is allocated as follows:

e Hex addresses 000 through 3FF -- program RAM
e Hex addresses 400through 4FF -- internal memory-mapped registers
* Hex addresses 800 through BFF - parametric and data RAM

Table 3-4 lists the memory-mapped registers. Descriptions of these registers are
given in the appropriate sections later in this data sheet.

3-10

Table 3-4. SPROC Memory Map

(“HDE';';ESS CONTENTS

000 - 3FF Program RAM

400 reserved

405 Serial port reset (write) g ";:J g =
406 Global break entry (write) 9 gst°
407 Global break exit -- start -- (write) '+

410

411 \al clock rate

412 Serial output port 2 intainal clock rate

413 Serial output port Sinternal clock rate

418 reserved

Sarial input port siport0 configuration

Serial output port soport0 configuration

Serial output port soport1 configuration

Probe port

Probe serial output port

490 - 495 reserved

4FB - 4FF Parallel port registers

800 - BFF Data RAM

800 - 813 Trigger flags (write to activate)
Co0 - FFF reserved

3-1

O
[
-
[

jealuyoa |

1onpoiyd
'€ UoNo23g

The Parallel Port

Overview

The parallel port is a 24-bit asynchronous, bidirectional port with a 16-bit (64K)
address bus. The port allows for 8-, 16-, or 24-bit parallel data transfers between
the SPROC chip and an external controller, memory-mapped peripheral, or
external memory. The port has programmable WAIT states to allow:for slow
memory access. A data acknowledge signal is also generated fi terface.

Two operating modes -- master and slave -- allow the SPROC

as a system controller (master mode), or as a memory-ma eripheral to an
external controller (slave mode). An input pin, MAS edicated to setting
master or slave mode operation. In master mode, the SP hip automatically
up-loads its configuration program from an ext -bit PROM into internal

RAM, at the initiation of boot. In slave mode, lies on an external

controller for its configuration.

A system using multiple SPROC chips: nust have a single bus controller. This
may be an external controller or a masteg;SPROC chip. All other SPROC chips in
the system must be configured ve mode.The bus controller must
individually enable the chip select iniptit, CS, of each slave SPROC chip while the
slave chip is being configu '

The 16-bit address fiel
interconnected in:

\DDRESS[15:0]) supports up to 16 SPROC chips

The external controller, memory-mapped peripheral, or memory may
communicate with a SPROC chip in 8-, 16-, or 24-bit format. Format selection is
accomplished with the MODE[2:0] pins. In 8- or 16-bit formats, the data may be
most significant (msb) or least significant (Isb) byte or word first. In 16- and 24-bit
modes, data is always msb-justified within the word being transferred, and the
Isb byte is zero-filled for 32-bit data transfer (i.e., in the second 16-bit word). To
accommodate 8- and 16-bit modes, two extended address bits are included. These
bits (EADDRESS[1:0]) are located at the Isb-end of the address bus. In master
mode, these are driven output lines. In slave mode, they are configured as inputs
and are driven by the external controller.

3-12

The following subsections describe data transfers via the parallel port for
different sources and destinations. In all types of parallel port data transfers,
signal values at the slave SPROC chip's mode (MODE[2:0]) and address
(ADDRESS|[15:0)) inputs must be stable before the chip select (CS) and read (RD),
or chip select and write (WR) request goes LOW. At that time, the address is
latched into the slave SPROC chip. Subsequently, after values on the data bus
(DATA[23:0]) become valid, data is latched at the destination on the nsmg edge of
the request.

To allow asynchronous communication with slow peripheral
the parallel port supports programmable WAIT states. A
WALIT states are possible, where each state corresponds to

machine cycle, or five master clock pulses. %

Section 3:

Product

Technical
Data

acknowledge) in slave mode. This normally-HIGH sxgna] goes LOW when the
SPROC chip presents valid data in a read operation, or is ready to accept dataina
write operation. DTACK is cleared when the external RD or WR strobe goes
HIGH. S

If enabled, a watchdog timer monitors a;;:l"i:aata transfers, and resets the parallel
port if the transaction time is greater than 256 machine cycles.

fro “Slave SPROC Chip or Peripheral

Prior to initiating the READ, the master SPROC chip must set up the
communication mode. This includes 8-, 16-, or 24-bit data select, msb/1sb byte
order, and number of WAIT states required for the peripheral. The master's
internal parallel port mode register controls these options, and therefore must
have been previously written to. In master mode, three bits of the parallel port
mode register determine number and order of bytes transferred and are output at
pins MODE[2:0]. These pins should be connected to the corresponding slave
SPROC chip pins, which function as inputs in slave mode, to ensure the slave's
communication mode matches the master's.

After a read cycle is initiated by the master SPROC chip, no further read or write
requests to the parallel port are possible until the current read cycle has been
completed. The parallel port will set up a stable address and then drive the RD
strobe LOW. The strobe will remain LOW for the number of WAIT states

3-13

-
®
0
T
3
o
o

1onpoid

:g uoloag

configured in the master's parallel port mode register, and will then be driven
HIGH. The data resident on the data bus will be latched into the master SPROC
chip on the rising edge of the RD strobe.

If the transmission mode is 8- or 16-bit format, the read cycle will be repeated
with the next extended address output, as determined by the state of
EADDRESS[1:0], until 24 bits of data have been received. The master's parallel
port input register is then updated, and the read cycle is complete. The GSP in the
master that initiated the read operation must then read the contents he parallel
port input register. With the read cycle completed, the data bus1 :

be reconfigured as output drivers to prevent the data bus frp
address bus will be driven with the last address. "

Master SPROC Chi

A master SPROC chip initates a read or write ope
a peripheral by reading or writing to an off: memory location. Prior to
initiating the WRITE, the master SPROC chip must set up the communication
mode. This includes 8-, 16-, or 24-bit data select, msb/Isb byte order, and number
of WAIT states required for the peripheral. The master's internal parallel port
mode register controls these options, ‘therefore must have been previously
written to. In master mode, t ts.of the parallel port mode register determine
number and order of bytes transferred and are output at pins MODE[2:0]. These
pins should be connected o the correspondmg slave SPROC chip pins, which

Write to Slave SPROC Chi

aslave SPROC chip or

the master's.

After a write cycle is initiated by the master SPROC chip, no further read or write
requests to the parallel port are possible until the current write %s}; is complete.
The parallel port will output a stable address and then drive the strobe LOW.
The strobe will remain LOW for the number of WAIT states configured in the
master's parallel port mode register. Valid data will be setup on the data bus, and
the WR strobe will be driven HIGH after the WAIT interval, latching the data into
the slave SPROC chip or peripheral. If the interface is configured in 8- or 16-bit
mode, the cycle will be repeated until all bytes have been output. After
transmission of the last byte or word, the address bus and data bus will remain
driven.

3-14

Read from Slave SPROC Chip by an External Controller

The external controller will set up address, extended address, and mode inputs,
and drive the SPROC chip's chip select input LOW. (If the communication mode
will never change, the SPROC chip's MODE[2:0] inputs could be tied to the
appropriate logic levels.) The external controller will then drive RD LOW, which
will latch the address, extended address (EADDRESS[1:0]), and mode inputs into
the slave SPROC chip. The SPROC chip will asynchronously fetch data from the
requested internal RAM location. Data will be latched into the external controller
when it drives the RD line HIGH again. The controller must ensure that enough

~chnical
Data

Q
=
he
o]
-
Q

asynchronous nature of the interface. Alternatively, the SPRO
normally-high DTACK (data transfer acknowledge) LOW.
the READ, and the controller need only wait for this event before raising RD. At
that time, the SPROC chip would correspondmgly ra:se B‘I'KC'R

&
c
o
o
%)

)

~
i

If the interface is configured for 8- or 16-bit commumcatlon, the external
controller must set up multiple extended addmsses and RD strobes (see Data
Transfer Modes).

1P address extended address, and mode inputs,
select input LOW. (If the communication mode
1 's MODE[2:0] inputs could be tied to the

xternal controller will then drive WR LOW, which
will latch the add xtended address, and mode inputs into the slave SPROC
chip. When the controller returns WR to HIGH, the data present on the data bus
will be latched into the SPROC chip.

The external controller will:

and drive the SPROC ¢
will never change, th
appropriate logic 1

ol

If the interface is configured for 8- or 16-bit communication, the external
controller must set up multiple extended addresses and WR strobes (see Data
Transfer Modes).

After the final byte or word has been transferred, the data will be asynchronously
written to the requested address in SPROC chip RAM.

3-15

—f
o
0
T
5
o
L

1onpoigd

€ UoN3g

Data Transfer Modes

MODE(0] and MODE[1] determine the number of bytes transferred per RD/WR
strobe. MODE(0] distinguishes between a partial word of 8- or 16-bits, and a full
24-bit word. MODE[1] distinguishes between the partial transfers of 8- and 16-
bits. All data transfers are aligned with the least significant byte of the data bus.
For 16-and 24-bit modes, the most significant byte is left-justified within the data
word, with descending order of significance in lower order data bus bytes.

MODE[1] MODE[0]
0 0
1 0
X 1

MODE[2] determines the byte or word ordé in ; for 8- and 16-bit modes:

MODE[2] 'BYTE/WORD ORDER

0

xtended address, specifies which portion of the full 24-bit

EADDRESS[1,0],
word is current .'

ng output on the data bus for 8- and 16-bit modes:

8-BIT MODE, MODE[2]=0

EADDRESS[1] EADDRESS|0] BYTE

0 0 ; msb

0 1 mid

1 0 Isb

1 1 unused (write)
0 byte (read)

8 BIT MODE, MODE[2]=1

EADDRESS[1] EADDRESS|0] BYTE
0 0 unused (write)

0 byte (read) .
0 1 Isb ..
1 0 E
1 1 l/j)

In receive data mode, the lower byte of the 1sb

SPROC chip. Similarly, in transmit mode, the loW t
filled with zeros. All data is msb-justified. The word ordenng for 16-bit data is
determined by EADDRESS[1]:

word is unused by the
teof the 1sb 16-bit word is

16 BIT MODE; MODE[2]=0

EADDRESS[1] . -5iEApDaé'ssm] WORD
0 msb
1 Isb

16 BIT MODE, MODE[2]=1

EADDRESS[1] EADDRESS[0] WORD
0 X Isb
1 X msb

Data transfer in 8- and 16-bit modes is completed when the EADDRESS lines
designate the final byte or word, namely, the 1sb when MODE[2] is LOW, or the
msb when MODE(2] is HIGH.

3-17

eleq
Jeoiuyoa |

o
-
[}
[=8
c
(2]
-

w
@
23
=
>
w

Boot Mode

A SPROC chip enters boot mode when it is configured as a master SPROC chip
(its MASTER input is HIGH) and the reset input (RESET) executes a LOW to
HIGH transition. During boot, the parallel port is set for 8-bit mode with the
maximum number of WAIT states (seven). The master SPROC chip runs an
internal program, stored in its control ROM, to upload its configuration from an
external 8-bit EPROM into internal RAM. The master SPROC chip will then
configure any slave SPROC chips present in the system. The EPROM wi
selected by a HIGH on the master SPROC chip's chip select (CS)
output in master mode. Slave SPROC chips or memory-mappx ngs i
Al output is
second byte of

be selected by a LOW at this signal. In master mode, the vah
controlled by a bit set in the transmit mode register, which i
the parallel port mode register. '

h Timer

The parallel port incorporates a simple watc}
undesirable lockup states in the interface, I
or a write flag is set (in the parallel port:

imer circuit to prevent any
master and slave modes, a read
register) on the initiation of a read
accessful completion of the operation.
If, for some reason, the host contid ler hangs-up in slave mode, or an invalid
condition occurs in master mode; the watchdog timer will detect the situation and
clear the interface flags the next operation to be accepted and executed.
The watchdog timer at 256 machine cycles (1280 master clock cycles).

enabled by setting bit 16 of the parallel port mode register.
le the watchdog timer. If the watchdog timer is triggered, a

The watchdog ti:
SPROC reset will d

flag is set in the parallel port status register.

Multiple I/O Lockout

If the parallel port is performing a read or write operation in master mode, and a
second write or read operation is initiated before the first I/O operation is
completed, the second 1/0 request is locked out. A lockout flag is set in the
parallel port status register.

3-18

Input/Output Flags and Lines

The RTS and GPIO signals can be used for communication protocols between
master and slave SPROC chips. These signals could be used as data-ready signals,
requests for data, or microprocessor interrupt requests.

RTS[3:0] (request to send) are four pins that function as inputs for a master
SPROC chip and as outputs for a slave SPROC chip. The RTS signals of a slave

© =T
c 38
o5 <
Z 8 £
c 29
¢ a ©
n e

Parallel Port Registers

The parallel port utilizes five memory:- mappx -
functions. Tables 3-5 and 3-6 list the par: el port registers.

Table 3~5 Parauel Pon Registers

REGISTER ADDRESS - **REGI_STER NAME READ/WRITE
4FB Lockout and watchdog flag clear write
4FC Parallel port status register read
4FD Parallel port input register read
4FE Parallel port GPIO/RTS control register write
4FF Parallel port mode register write

3-19

-
3
T
3
5
o

1onpoid

g uoNoag

Table 3-6. Parallel Port Register Bit Definitions
BIT | REGISTER4FC | REGISTER 4FE REGISTER 4FF
0 GP[0] INPUT SETRTS[0] RX MODE[0]
1 GP[1] INPUT SET RTS[1] RX MODE[1]
2 GP[2] INPUT SET RTS[2]
3 GP[3] INPUT SETRTSI3]
4 MODE(0] CLEAR RTS[0]
5 MODE[1] CLEAR RTS[1] RX WAIT STATES(2]
6 MODE[2] CLEAR RTS[2] RX STROBE DELAY
7 PARALLEL PORT T PARALLEL PORT SOFT

BUSY FLAG RESET
8 LOCK OUT FLAG TS (master mode only)
9 WATCHDOG TX MODE[0]
FLAG

10 | READFLAG TX MODE[1]
11 SET GPIO[3] TX MODE[2]
12 CLEAR GPIO[0] TX WAIT STATES([0]
13| RTS[1]INPUT CLEAR GPIO[1] TX WAIT STATES[1]
14 | RTS[2] INPUT CLEAR GPIO[2] TX WAIT STATES[2]
15 | RTS[3] INPUT CLEAR GPIO[3] TX STROBE DELAY
16 | NA OUTPUT GPIO[0] N/A
17 | NnA OUTPUT GPIO[1] N/A
18 | NA OUTPUT GPIO[2] N/A
19 | NA OUTPUT GPIO[3] N/A

3-20

Table 3-6. Parallel Port Register Bit Definitions (Continued)

BIT REGISTER 4FC REGISTER 4FE REGISTER 4FF
20 NA/ INPUT GPIO[0] N/A
21 N/A INPUT GPIO[1] N/A
22 N/A INPUT GPIO[2] N/A
23 N/A INPUT GPIO[3] N/A

The Parallel Port Status Register

The parallel port status register, a 16-bit register, contams slgnal values of selected
SPROC chip pins and I/O status flags. This veglster updated every machine

inputs for a master SPROC chlp and outputs for a slave. Bits 4 through 6 contain
the current values of the MODE conﬁgurat:on

parallel port is performmg_ read. operatlon Similarly, bit 11 contains the write
flag, which is set during a. peration. (For 8- and 16-bit modes, these flags
remain set until the entire 24-bit data word has been transferred.)

Bit 7 is set while the parallel port is busy servicing an I/O transaction. Bit 8 is set
if the parallel port is busy in master mode and another read or write request is
received. The second request will be locked out and the lockout flag set. Bit 9 is
set if the watchdog timer is enabled and it detects a timeout condition. Bits 8 and
9 can only be cleared by a SPROC reset or any write to the lockout and watchdog
flag clear register.

The Watchdog/Lockout Flag Clear Register

Any write to this register clears watchdog and/or lockout flags set in the parallel
port status register.

3-21

&
c
2
©
9
n

1%
=}
©
o]
-
a

Technical

Data

The Parallel Port Input Register (Master Mode Only)

The parallel port input register, a 24-bit register, holds the data word received
during a read operation for subsequent storage at the destination address. This
register also buffers and assembles the incoming data for 8- and16-bit modes. This
register must be read by a GSP or the access port.

The Parallel Port GPIO/RTS Control Register

The parallel port GPIO/RTS Control register, a 24-bit register, is
independently configure each GP pin as either an input or an-oul out. Itis also

used to individually set and clear GP pins that are outputs and slave SPROC chip
RTS pins. T

-
o8

Eg
85
®5

=8

1onpoid
g uonodag

nd CLEAR bits in the
AR bits for RTS signals are
are in the mid byte. LOW
no change to the associated
ated signal HIGH. A HIGH

ed signal LOW. If a HIGH value is written
to both SET and CLEAR bits, the CLEAR dominates.

Each RTS or GPIO signal has a dedicated pair of SET
parallel port GPIO/RTS control register. SET anc
in the low byte; SET and CLEAR bits for G

Each GPIO signal addltlonatly hasa dedicated pair of OUTPUT and INPUT bits

an input LOW values written to both OUTPUT and
ange to the assoc1ated signal. A HIGH value at the

The Parallel Port M Register

The master SPROC chip's parallel port mode register, a 16-bit register, controls the
parallel port mode and timing,.

When the master SPROC chip is reading from a slave SPROC chip or peripheral,
bits 0 through 2 of the parallel port mode register (the RX MODE bits) are output
at the master SPROC chip's MODE pins. Register bits 3 through 5 contain the
number of WAIT states programmed for the read operation (i.e., they determine

3-22

the duration of the read strobe LOW level generated by the master SPROC chip).
The HIGH level between read strobes is 2 master clock cycles; this duration can be
stretched to 5 master clock cycles for slower peripherals by setting bit 6 of the
mode register (the RX strobe delay bit).

Similarly, when the master SPROC chip is writing to a slave SPROC chip or
peripheral, bits 9 through 11 of the parallel port mode register (the TX MODE bits)
are output at the master SPROC chip's MODE pins. Register bits 12 through 14
contain the number of WAIT states programmed for the write ope
HIGH level between write strobes can be stretched for slowel i
setting bit 15 of the mode register (the TX strobe delay bit).

Data

&)
=
©
o
o
Q.

Technical

[}
c
[}
=
o
W
2}

s CS pin. A soft

Bit 8 of the mode register is output at the master SPROC chips
RTS lines (but not the

reset of the parallel port, which resets the interface flags a

Parallel ignal.
Table 3-7 lists the parallel port signals.

SIGNAL
ADDRESS[15:0] +ADDRESS BUS
BUSGRANT BUS GRANT causes the SPROC chip to three-state the

address and data buses, and MODE pins, when LOW.

BUSY 0] PARALLEL PORT BUSY is set LOW when an /O
operation is occurring, set HIGH when completed. Also
reset HIGH by watchdog timer if a timeout occurs.

CRESET Tied LOW.
(13 o M) CHIP SELECT signal. A slave SPROC chip is selected
1(S) by setting its CS input LOW. A master SPROC chip

generates this signal as an output, expecting to select a
slave SPROC chip by setting CS LOW, and an external
ROM (containing every slave SPROC chip's
configuration) by setting it HIGH.

3-23

—
(1]
(2]
>
=
o
=

1onpoig

:g UoNnoag

Table 3-7. Parallel Port Signal Definitions (Continued)

SIGNAL

TYPE*

DESCRIPTION

DATA[23:0]

o

PARALLEL PORT DATA BUS -- 24-bit
input/output/three-stateable bidirectional bus.

DTACK

o

DATA TRANSFER ACKNOWLEDGE. In slave mode,
set LOW by SPROC chip after RD or WR:has gone
LOW and the SPROC chip has complets: he data
transfer, set HIGH after RD or WR Ij :

output is always HIGH for a mastgr

EADDRESS[1:0]

oM)
1(S)

ch portion of the
erred in 8- and

EXTENDED ADDRESS spe
full 24-bit word is currently
16-bit modes.

GP[3:0]

GENERAL PURP.
configurable a
interface SPR
external

Hirtes, individually
ut or output. Can be used to
.with each other or with an

5.data-ready, microprocessor

MASTER

MAST ER ’ééuses SPROC chip to operate in master
| mode when HIGH, and in slave mode when LOW.

MODE[2:0]

DE0] differentiates between full 24-bit mode (HIGH)

:and partial (8- or 16-bit) modes (LOW).
MODE([1] differentiates between 8-bit mode (HIGH) and

16-bit mode (LOW) for partial data transfers.
MODE([2] specifies whether the first 8- or 16-bit
transmission contains the Isb (HIGH) or the msb (LOW).

Tied LOW.

o M)
1(S)

READ strobe generated by master SPROC chip or
external controller. A LOW value on RD initiates a
READ operation. RD must remain LOW long enough to
successfully complete the READ; programmed WAIT
states or DTACK handshaking may be utilized for this

purpose.
Data latches at the destination when RD returns HIGH.

3-24

Table 3-7. Parallel Port Signal Definitions (Continued)

SIGNAL TYPE*

DESCRIPTION

RESET I

RESET must be held LOW for a minimum of 25 master
clock cycles after power and clock have stabilized. This
input is a Schmitt trigger type which is suitable for use
with an RC time constant to provide power-on reset.
While RESET is LOW, a master mode SPROC chip will
force address, extended address, and:8PROC select
address LOW, while driving TS, RD::and WRHIGH.
Slave SPROC chips connected ¢ the will then be
deselected and have driven inputs;:MODE[2:0) will be
configured for 8-bit boot modé:with msb byte first and
zero WAIT states. The data f‘be driven.

RTS([3:0] (M)
0 (S)

RTS REQUEST TO:SENL - These pins are outputs
for slave SPROC dinputs for master SPROC
chips. Can be: 16.interface slave with master or
external cantrolferas data-ready, microprocessor

c. Controlled and configured by

. port GPIO/RTS control register.

WR oM)
1(S)

WHRITE strobe generated by master SPROC chip or

Jexternal controller. A LOW value on WR initiates a

WRITE operation. WR must remain LOW long enough
-successfully complete the WRITE; programmed

' WAIT states or DTACK handshaking may be utilized for

this purpose.

Data latches at the destination when WR returns HIGH.

* (M) = master mode;

) = slave mode, | = input, O = output

3-25

(s}
C
o
©
<
N

&)
2
©
o]
s
Q.

Technical

Data

-4
o
o
T
E)
o
=R

1onpoid

g uonoag

Parallel Port Timing
Table 3-8. Timing for External Controller Read from

Slave SPROC Chip
SYMBOL |PARAMETER MIN MAX |UNIT |TEST CONDITION
Setup and Hold Times
torHD DATA hold after RD & |20
torLo Delay time: DATAvalid |10 20
after RD "L for second
byte/word and third byte
of 8-bit and 16-bit rhodes
(MODE[0] = LOW)
toRLDM Delay time: DATAvalid |5
after RD —¢_ for 24-bit
mode and first byte/word
of 8-bit and 16-bit modes
(RAM access)
tHRA Hold time: ADDRESS ns
afterRD &
thre Hold time: CS i ns
tsAR 10 ns
tscr 0 ns
Read Strobe
twRH Minimum pulse width RD |20 ns
HIGH
twRL Minimum pulse width RD |20 ns
LOW for last two bytes
and second word of 8-bit
and 16-bit modes
(MODE[0] = LOW)

3-26

Table 3-8. Timing for External Controller Read from
Slave SPROC Chip (Continued)

SYMBOL |PARAMETER MIN MAX |UNIT |TEST CONDITION
twRLM Minimum pulse width RD | 10 'c?
LOW for 24-bit mode and
first byte/word of 8- and
16-bit modes (RAM
access)
tooot Delay time: Data valid to |0 10 ns
DTACK ©
torHe Delay time:RD 4 to |20 30 ns
BUSY & :
torHDT Delay time: RD _& to
DTACK &
toRLB Delay time: RD ¥_ to
BUSY ©
tuBr Minimum time from
BUSY & to RD 7
tMDTHR Minimum time fro ns
tMOTLR 0 ns

3-27

Section 3:

T\
-

- tsch
ADDRESS &M HERARHRRD
4 MODE(0]

o O o

990 2

5e5
& 2} P MODE([1] % m
MODE{2] e % 20 %% %Y
EADDRESS][1] NReleleieelel

*1 tsAR
<> Lipa * tira
EADDRESS|0]
RD Y
DATA[7:0] K
émnn
T
DTATR
tDRHE
BUSY
— le—1toaB > Fe—toas | —» *—Toas
BR BR

NOTE: For Isb-first operation, complement MODE[2] and EADDRESS inputs.

Figure 3-4. External Controller Read from Slave SPROC Chip:
8-bit Mode

3-28

s Y y—
~ |etscn tAc — e
ADDRESS | SIITITO XXX ..
woosy 2 s BHE
MODE[1] X¥] B | BRRERR
wover | IR
ADDRESS{1] ¥ 2 ERRRRS
i R ‘
DATA[150] %% 3@@ o)
DTLR
_.to T _.tD T
o — NP A
toom_. 'DRE:‘T;E tDDDT_’ o :J;j ™
By |y ;__/i__
J I'!DRLB —t L—tDRLB PR _l
};ABRV tMBR

NOTE: For Isb-first operation, complement MODE[2] and EADDRESS[1] inputs.

Figure 3-5. External Controller Read from a Slave SPROC Chip:
16-bit Mode

3-29

-—
©
0
T
3
o
=3

‘g uonoag

tHRC
ADDRESS
wooep] % | R RRRRRRRR
® | —
‘ = |=torHD toRHp —>
DATA[23:0] 23232352323 &0 E0, ALID DATA mm C
tvoTLR tMDTHR
toRHDT toRHDT
DTACR A -
loRHe | > torLs
BUSY /] \I :
Figure 3-6. External Controller Read from Slave SPROC Chip:

24-bit Mode

3-30

Table 3-9. Timing for External Controller Write to

Slave SPROC Chip
SYMBOL |PARAMETER MIN |MAX |UNIT |TEST CONDITION
= e ‘#
Setup and Hold Times .
tHwa Hold time: ADDRESS |0 i
after WR 35 =
2c 2
thwe Hold time: TS _K after |0 % °5a
WR & » e
tHwo Hold time: DATA after 0
WR & .
tsaw Setup time: ADDRESS |40 |ns
toWR T :
tscw Setup time: TS 1_ to ns
WR ©
tspw Setup time: DATA to WR ns
4
Write Strobe
TWwH Minimum pulse width WR tovk
HIGH for 24-bit mode
and last byte/word of 8-
bit and 16-bit modes
(RAM access)
tWWHM Minimum pulse width WR | 20 ns
HIGH for first two bytes
and first word of 8-bit and
16-bit modes
(MODE[0] = LOW)
twwi Minimum pulse width WR | 20 ns
LOW
towHs Delay time:WR & to |5 10 tcyk | (See note below)
BUSY &
10 20 ns

3-31

—
o]
(2]
T
=
0
2

1onpouyg
g uonoag

Table 3-9. Timing for External Controller Write to
Slave SPROC Chip (Continued)

SYMBOL |PARAMETER MIN MAX [|UNIT |TEST CONDITION
towHDT Delay time: WR 4 to |10 20 ns
DTACK &~
towLe Delay time:WR Y_to |10 20 ns
BUSY ©
towLDT Delay time:WR Y¥_to |5 10 toyk note below)
DTACK
10 20
tmew Minimum time from 20
BUSY 4 1o WR ¢
tMDTHW Minimum time from (See note below)
DTACK 4 o WR 1
tMoTLW Minimum time from

DTACK L to WR &

NOTE: Top duration applies when ar
when MODE[0] is LOW and tt
16-bit mode, is transferred pr

3-32

ctual w tite to RAM occurs. Bottom duration applies
ond byte in 8-bit mode, or the first word in

5the:actual write to RAM.

TS\
*l < tscw

ADDRESS

MODEI0] o

MODE[1]

MODE[2] o

(8]
=
he
(]
—
a

Technical

™
c
o
°
AN

EADDRESS[1R)

EADDRESS[O&

WA

DATA[7:O]m

> Mmbwﬂ tDWHDT ﬂ tOWHOT

towor towHoT

NOTE: For Isb-first operation, complement MODE[2] and
EADDRESSJ[1] inputs.

Figure 3-7. External Controller Write to Slave SPROC Chip:
8-bit Mode

3-33

o5 Y
N

L« tscw

ADDRESS@

Fog MODE[0p
£
553
€20
MODE[1KY

MODE[2K)

o IMDTLW
DTACR tl_ S

towHpT

towLoT

NOTE: For Isb-first operation, complement MODE[2] and

EADDRESS[1] inputs.

Figure 3-8. External Controller Write to Slave SPROC Chip:
16-bit Mode

3-34

, ’..

tHwa

9. 9.90.90.9.0.0.0.0.0,
v %% %%

..............

AN/
000.

MODE[0] g

™
o
o
3]
<

Product

ER A NAAAANS
Pededetee %%

o)

a

K

/

CAAA/
K

(X

Figure 3-9. External Controller Write to Slave SPROC Chip:
24-bit Mode

Technical

The Serial Interface

Overview

The chip serial interface provides four independently programmable serial ports;
two input ports and two output ports. Each port consists of four lines: data, clock,
strobe, and sync. The strobe line functions as a “data valid” signal, and the sync
line, when raised HIGH, associates the serial data with the begmmng of an
internal data buffer for inputs, or with the end of a FIFO for outpu

The following port options are programmable:

—
]
(2]
=
2
(o]
=2

1onpoigd
1 uonoasg

1. Data width -- 8-, 12-, 16-, or 24-bits of data per wo

2. Order of data -- either most significant bit (r significant bit (Isb)

first.

3. Short, long, or stereo strobe — a short strobe is a pulse at the active strobe level
that is one serial clock cycle wide, oceurring prior to the first valid data bit. A
long strobe remains at the active strobe level during the entire interval
bounded by the first and last valid data bits for the given data width. A stereo
t channel data at a common serial port.

ﬁ:fgated clock mode, a burst of clock pulses

4. .
1 is'valid, and clock is quiescent otherwise.
5. either internally generated by the SPROC chip or

. The internal clock is obtained from the master clock via
the following formula

MC,

5Cr = 7@5%6- ()

where SC;is the serial clock frequency, MCyis the master clock frequency, and
r is the value of the appropriate serial port clock rate select register.

6. Clock polarity -- data transitions are aligned with the positive edge of the
serial clock for non-inverted clock, or the negative edge for inverted clock.

3-36

7. Active strobe level - specifiable as either HIGH for non-inverted strobe, or
LOW for inverted strobe.

8. Inverted msb - for offset binary format.
Short and long strobes are associated with single channel data. Stereo strobes are

associated with time-multiplexed dual channel data, where consecutive data
words are differentiated by complementary strobe levels.

Each serial port is independently serviced by a dedicated data flow manager that
organizes and stores data in and retrieves data from a circular FIFQ) storage area
within the CMU. For input ports, the FIFO consists of egual length buffers whose
size and index (number) are programmable.

address of
first buffer

buffer 0

Input ports with short or long strobes support a maximum of 255 buffers and a
maximum buffer length of 511 words. Input ports with stereo strobes require that
there be exactly two buffers, each buffer containing two words.

An output port FIFO contains a single buffer whose maximum size is

programmable. For ports with stereo strobes, left and right channel data are
output alternately.

3-37

3]
3
©
°
a

Technical

™
c
e
8]
9]

—
(9]
(2]
T
3
(2]
[+

1onpoid
:g uonoag

For input ports, a HIGH on the sync input will force the current serial data word,
when assembled, to be stored at the beginning of a FIFO buffer. If, at that time, the
data word would have been stored at the beginning of a buffer anyway, the sync
signal is ignored. Otherwise, the sync HIGH forces this data to be stored at the
beginning of the first buffer. The duration of the HIGH sync pulse for input ports
with short or long strobes must be at least 1.5 master clock cycles. No alignment
with data or clock is necessary. Input ports with stereo strobes requlre that the
sync and strobe inputs be tied together.

For output ports, the sync signal is an output pin whose HIGH:;
completion to other devices. The minimum guaranteed dura
pulse is 1.5 master clock cycles.

On a write to the soft reset register, the data flow mi
that define each port's configuration by reloading
counters. The FIFO will start at its initial locatipn

nitializes all registers
RAM, and clears all

Serial Port Configuration Registers

Each serial port's configuration and status, including its FIFO organization, is
governed by seven consecutive ory-mapped registers, designated addr0
through addré. Their width ns are shown in Tables 3-10 and 3-11. The
configuration registers fo ports siport0 and siport1 each occupy
seven addresses. The regi: serial output ports soport0 and soport1 also

3-38

Table 3-10

. Serlal Port Configuration Registers

INPUT OUTPUT
REGISTER WibTH | FUNCTION wibtH | FUNCTION
ad;0 9 FIFO buffer length | N/A N/A
addr1 8 FIFO index length | 12 FIFQ lé'ngth
addr2 12 FIFO start address | 12 | same as input
addr3 1 Port setup register, see definitionA'iﬁfeiéﬁv‘
addr4 N/A N/A 1ecimation register
addr5 N/A N/A Run register

addré

Wait trigger mask

&
c
o
©
<
%2}

8]
=
©
(e}
=
a

Technical

data width
24-bits
0 1 16-bits
1 0 12-bits
1 1 8-bits
HIGH LOwW
2 msb first Isb first
3 short strobe long strobe
4 gated clock continuous clock

3-39

—
®
o
T
3
o
=R

1€ UoN23g

Table 3-11. Port Setup Register (addr3) Bit Definitions (Continued)

BIT FUNCTION
5 internal clock external clock
6 inverted clock* non-inverted clock®
7 inverted strobe non-inverted strobe..
8 inverted msb non-inverted ms
9,10 Sets /O format

bit 10 bit 9

0 0

| format 3**

reserved Use
format 3**

2 qgés on negative edge
& changes on positive edge

* inverted clock -
non-inverted.gio
**stereo-stro

The independent ttributes supported by register addr3 allow definition of a
wide variety of se terfaces. A specific configuration is matched by selechng
the corresponding optlons For example, compatibility with stereo format 2 is
obtained by configuring 16-bit data, msb first, continuous clock, non-inverted
clock, non-inverted strobe, non-inverted msb, and format 2 stereo strobe
(transition at same clock edge as first valid data bit). Similarly, compatibility with
stereo format 3 is obtained by configuring 16-bit data, msb first, continuous clock,
inverted clock, inverted strobe, non-inverted msb, and format 3 stereo strobe
(transition one clock cycle prior to first valid data bit).

The SPROClab development system automatically generates the register values
corresponding to user-supplied serial port options. The registers are then
configured during boot by the external controller. Subsequent reconfiguration can
also be performed.

3-40

Serial Input Ports
The SPROC chip pins for the two input ports are:

e data - SRXD[0, 1]

* clock -- SRXCLKO0, 1]

* strobe -- SRXSTROB(0, 1]
e sync-- SNCPULSI[0, 1]

The serial data, SRXD, enters a bidirectional shift register, v
SRXCLK, for proper alignment of either msb- or Isb-first formats.When the
trailing edge of a long strobe occurs at SRXSTROB, or when the number of data
bits following the leading edge of a stereo strobe or the trallmg edge of a short
strobe equals the data width, shifting stops and'the data is latched into a holding
register. Data for 8-, 12-, and 16-bit formats are left-;usnﬁed and right-padded
with zeros.

(8]
2
hel
o
-
a

Technical
Data

&
c
e
©
<
n

For all strobe types, consecutive data®
written to consecutive words of the sa

buffer has been filled, t'heicycle starts again from the first buffer
Table 3-12 lists thededlcated write-trigger addresses for the serial input ports.

Table 3-12. Serial Input Port Write Trigger Addresses

HEX ADDRESS SERIAL PORT

800 serial input port siport0

801 serial input port siport1

If the buffer length, as contained in configuration register addr0 is zero, the data
flow manager is considered disabled and the port data will be written to a preset
memory address.

3-41

ejeqg
|eatuyoa)

o
-
o]
Q
(=4
0
-

w
@
2
=
3
w

Serial Output Ports
The SPROC chip pins for the two output ports are:

¢ data - STXD[0, 1]

e clock -- STXCLKIO, 1]

e strobe -- STXSTROBI0, 1]
¢ sync - SNCPULSOI0, 1]
e trigger -- COMPUTE[3:0]

The parallel data from the output FIFO buffer is latch
during the host slot of the SPROC chip machine cycl

Iding register
loaded into a

shift clock STXCLK.

In order to initiate serial output, the po
setting bit 23 of the run register (addr5,
there is sufficient data in the output FI

In order to synchronize output , the 24-bit wait trigger mask (addré) is loaded into
a mask register. Twenty bits mask register, bits 0 through 19, can be reset to
0 by the occurrence of int reprogrammed events; for 0< i< 13 hex, bitiis
cleared by writing o memory location (800+i) hex. The four remaining
register positions, through 23, are cleared to 0 by positive transitions at
inputs COMPUTE[0] through COMPUTE(3], respectively, to allow external
control of output synchronization. When all bits are cleared, a pulse is generated
to allow output of data, depending on the contents of the decimating register.

The 8-bit decimation register (addr4) provides a mechanism for selecting output
rates, and is useful for decimating systems. This register activates divide-by-N
reduction, where N is the numeric contents of the decimation register; the mask
register is loaded and cleared N times before data is output.

When the last word of the output FIFO buffer is about to be output, a HIGH pulse
4 master clock cycles wide is output at SNCPULSO. After the last data word has
been completely output, the data flow manager reinitializes the serial output port
(counters are cleared and registers are reloaded).

3-42

rial Interfac

Is

Table 3-13 lists the serial interface signals.

Table 3-13. Serial Interface Signals

SIGNAL

TYPE

DESCRIPTION

COMPUTE[3:0]

COMPUTE inputs allow synchronization of: mternal
events for the two serial output ports.
transitions at these inputs clear bit
output port mask registers. Each,
register must be entirely clearod {
output data.

SRXD

SERIAL INPUT DATA cin be 8, 12-, 16-, or 24-bit
words, msb- or Isb-first, synchronized to positive or
negative clock edges. i msb (for offset binary
format) or twos-complemsnt format.

SRXCLK

SRXSTROB

\L'INPUT STROBE flags valid data.

it and long strobes, associated with single-channel
ata, can have an inverted (data valid when LOW) or
on-inverted (data valid when HIGH) active level. A
short strobe is a pulse at the active level one serial clock
cycle wide prior to the first valid data bit. A long strobe
remains at the active level from the first valid data bit
through the last.

Stereo strobes are associated with dual-channel data,
and alternate in level to distinguish data from each
channel.

3-43

0]
o
o

S

Table 3-13. Serial Interface Signals (Continued)

SIGNAL TYPE | DESCRIPTION

SNCPULSI | SERIAL INPUT SYNCHRONIZING pulse synchronizes
input FIFO buffer to incoming data. When HIGH, forces
incoming data to be written to the first word of the first

buffer. If a new buffer was about to be started when the
sync pulse occurs, the sync pulse is ignored. For short

- o and long strobes, the pulse must be at:e; master

) g i clock cycles wide. For stereo strobes;: this ingut pin
Saf should be tied to SRXSTROB. ‘

56 >

£o® SNCPULSO o SERIAL OUTPUT SYNCHRONIZING: pulse signals that

the end of the output FIFO by :!
For all strobe modes, a HIGH pulse at least 4 master

clock cycles wide is the start of the last serial
output word.

A can be 8-, 12-, 16-, or 24-bit
rst, synchronized to positive or
negative ck ges, inverted msb (for offset binary
format) or t mplement format. To accommodate
slower penpherals outputting each data word can be
_} synchronized. Decimation allows further reduction of
E output ‘rate by requiring that the events occur the
infigured number of times before enabling output.

STXD o SERIAL OUT
words, m

STXCLK 'SERIAL OUTPUT CLOCK can be externally supplied or
generated by the SPROC chip. Clock can be gated or
continuous, inverted (data changes on negative edge)

or non-inverted (data changes on positive edge).

3-44

Table 3-13. Serial Interface Signals (Continued)

SIGNAL TYPE | DESCRIPTION
STXSTROB o SERIAL OUTPUT STROBE flags valid data.
Short and long strobes, associated with single-channel
data, can have an inverted (data valid when LOW) or
non-inverted (data valid when HIGH) active level. A
short strobe is a pulse at the active level ona seri
cycle wide prior to the first valid data bit;
remains at the active level from the-hrst
through the last.
the first valid data
for the other chan
Serial Interface Timing
SYMBOL TEST CONDITION
torco
toresLe
STXCLK edge to
fall of long strobe at
STXSTROB
torcsLr Delay time: active |0 20 |ns
STXCLK edge to
rise of long strobe
at STXSTROB
toressF Delay time: active |0 20 |ns
STXCLK edge to
fall of short strobe
at STXSTROB

3-45

Section 3:
Product
Technical

Table 3-14. Serial Output Port Timing (Continued)

SYMBOL |PARAMETER MIN MAX |UNIT |TEST CONDITION
tDTCSSH Delay time: active 0 20 ns
STXCLK edge to
rise of short stobe
at STXSTROB
twrc Serial clock 4(256-(r))/MC; (See note below)
P STXCLK period
838 2 tovk
225 N, Serial clock 0.4 0.6 |twrc
&7 STXCLK high time
twrsne Output sync pulse {4 tevk
high time at
SNCPULSO

NOTE: Top duration applies when internal serial clock is selected. Bottom duration applies
when external serial clock is selected.

3-46

—t
3 TXCLK _/
ONG)
STROB =88
=38 =
o 2%
— o
HORT)
3TROB -]
—
toressn
TSTSTSTSTSA
COEEEN
STXD XXX
NCPULSO

Figure 3-10. Serial Output Port Timing

3-47

S1euLo4 02191S :Bujwil ndinQ jelss “Li-g ainbi4

| N\
1 (o[[z e v]s[s[] e elodrdleedmlsd }} [of¢]2[e]v[s]9]]e]6]ofryzHepbiisy axis

1

OX1S

|euusy) Yo aoulisxis

€ IVIWNHO4 03431S

ad1q,

A oDl ls[ol2 el elofufeielvdsy | | [o[tIele[v]s]o]z
g
|3, _~ 1euueyd IyBlY J

Te[e[oftledcvs] \ axis

WIOXLS

a0d1sX1s

¢ LlVNHOd 0343ls

jouueyd Yy

Section 3:
Product

Technical
Data

3-48

Table 3-15. Serial Input Port Timing

SYMBOL | PARAMETER MIN MAX |UNIT |TEST CONDITION

tHrcD Hold time: valid SRXD |10 30 ns
data after inactive
SRXCLK edge

tHRCSL Hold time: fall of long | 10 20 ns
strobe at SRXSTROB
after inactive SRXCLK
edge

o
3
T
[e]
P
a

Technical
Data

&
c
2
©
Q
n

tHRess Hold time: fall of short | 10 20 ns
strobe at SRXSTROB
after inactive SRXCLK
edge

tsroc Setup time: valid 20 ns
SRXD data before
inactive SRXCLK edge

tsrsLe Setup time: rise of long |20 ns
strobe at SRXSTROB
before inactive
SRXCLK edge

tsrssc Setup time: rise of short | 20 ns
strobe at SRXSTROB
before inactive
SRXCLK edge

twre Serial clock SRXCLK | 4(256-(r))/MCy (See note below)
period
2 tevk

twRcH Serial clock SRXCLK 0.4 0.6 |tawc
high time

twRsne Input sync pulse high [1.5 tovk
time at SNCPULSI

NOTE: Top duration applies when internal serial clock is selected. Bottom duration applies
when external serial clock is selected.

3-49

SRXCLK

(LONG)
SRXSTROB

—'

3
|w]

T
&3

[e]

=R

'g uonoag

SRXSTROB

SRXD

SYNCPULSI

NOTES:

1. Clocks and strobes areé shown non-inverted. .
2. Although timing is shown for both long and short strobes, these options are mutually exclusive.

Figure 3-12. Serial Input Port Timing

3-50

eleqg
|PoIuyo3]

1onpouyg
g UoNdag

sieunog oai9s :Bujwyl induj jepes “gi-g aunbi4

\ 2N
R RRIo[[zl [s[s[] &m_o__:w?_:_m_v&mxxo___N_m_v_m_or_ﬂ%,_:w%?_ﬁgoéw

TOXYS

gOHLSXHS
_ IeuUBYD Y& ISTNAONS
0000090060 € IVWHO4 03H3alSs
2,0.0.0.0.0.0.0.0.6
RRRRRHHRRRRE
couH{] TI oausy
oaus; =
axus
Ihiniihghnhahhhhhhhhhhy N10XHS
t
TR UUBUA US HOHLSXHS
In { jeuueyd o 4._ \ jeuueyg Yo SIONS

¢ LlVWNHO4 O3H3ls

3-51

—
1}
(2]
=
2
(2]
=3

1onpoug

1g uonoag

The Access Port

Overview

The access port provides a serial interface for dynamically modifying and
observing the contents of internal SPROC chip memory, without any hardware
changes or interruption to processing. This port is useful for debugging a design,
for interactively modifying the design, and for testing SPROC-based‘fi
implementations.

ing and

ip's access port.

‘parameters and

esired functionality

station console, without
chip program or the access

The SPROClab development supports interactive design d
verification via the SPROCbox interface unit and the SP
This system allows the user to probe selected signals,
code, and reconfigure the SPROC chip, if necessary, unt
is obtained. The user exercises this control from the
requiring detailed knowledge of the complled SPR
port timing.

e access port can also be used to

After the design phase has been comple
sed design while it is operating

optimize or adjust the 1mplemented SP.
within its targeted environment.

Access Port Interface

« datain— ARXD

e strobe in - ARXSTR
e data out - ATXD
e strobe out — ATXSTR

ACLOCK is an externally-supplied clock that provides the access port timing for
both input and output pins. Input data transitions at ARXD must be aligned with
the rising edge of ACLOCK. Output data is always aligned with this clock edge.
The maximum ACLOCK frequency is 40% of the master clock frequency.

3-52

The first bit of the serial data input, ARXD, is a control bit that specifies the
operation; HIGH for a read and LOW for a write. The next 15 bits of the serial
input stream specify an extended memory location; the first three bits are
reserved for future expansion and must all be LOW, while the remaining bits
specify an internal SPROC chip address, with most significant bit first.

For a read operation, 16-bit serial input causes the contents of the specified
memory location to be asynchronously read and then output at ATXD, most
51gmﬁcant bit first. The 24-bit output strobe, ATXSTR, remains HIGH while valid
data is being shifted out at ATXD. :

action 3:
Product
Technical

bit first. When all 40 serial bits have been recewed the
asynchronously written to this address. :

3-53

—
]
(2]
=
2
o
L

1onpouyg

1g uonoag

Access Port Signal Table
Table 3-16 lists the access port signals.

Table 3-16. Access Port Signals

SIGNAL

TYPE

DESCRIPTION

ACLOCK

Externally-supplied clock providing the acéess port
timing for both input and output pins. Maxim:
frequency is 40% of the master clo

gy.

ARXD

SERIAL INPUT (RECEIVE) DATA gpecifying a READ or
WRITE operation, aligned with.the rising edge of

ACLOCK. A :
For a READ, the serial inj
The first bit is HIGH;
5 through 16 specify an
with most significant bit first.

Bits1 through 4 are LOW, bits 5 through 16 specify an

internal SPROC chip address, with most significant bit

first; and bits16 through 40 specify the word to be
gritta is address, most significant bit first.

ARXSTR

INPUT STROB. The strobe must be aligned
j:the rising edge of ACLOCK. and remain HIGH
le valid data is at ARXD (16 ACLOCK cycles for a
READ and 40 cycles for a WRITE).

ATXD

SERIAL OUTPUT (TRANSMIT) DATA in response to a
READ operation. The 24-bit word is shifted out most
significant bit first, aligned with the rising edge of
ACLOCK.

ATXSTR

SERIAL OUTPUT STROBE. ATXSTR remains HIGH
while valid data is at ATXD. It is aligned with the rising
edge of ACLOCK.

3-54

Access Port Timing
Table 3-17. Access Port Tlmlng

SYMBOL |PARAMETER MIN MAX |UNIT |TEST CONDITION
toaTcD Delay time: ACLOCK _§~ |0 30 ns
to valid ATXD data
tpatcsr Delay time: ACLOCK _&~ {0 20 ns
to fall of ATXSTR strobe S5
c 32
toarcsn | Delaytime:ACLOCK &~ |0 20 ns ERE
to rise of ATXSTR strobe s e

tHARCD Hold time: valid ARXD 20
data after ACLOCK Y_

tHARCS Hold time: fall of 20
ARXSTR after ACLOCK
A)
tsarDc Setup time: valid ARXD 20 ns
data before ACLOCK i
tsarsc ns
twac tovk
twacH 0.6 twaC

3-565

ACLOCK

ATXSTR

ATXD

-—f
@
[e]
>
2
o
=3

1onpoud
'€ UoNoag

Figure 3-14. Access Port Output Timing

3-56

twacy
ACLOCMW\/\'/\N
| Mearsc

ARXSTR

ARXD

ARXSTR /]

a0 X\ Mse X

tsaroc +

b 'CC Operation
/—erch 0-@@-1 DO e |
15 14 13 1% 11| 10 22
A

Write

“‘HARcs -I |<-

15 14 13 12 '"11' 10
le——————————ADDRESS

Read

Operation
l.@»: J

1 0

Figure 3-15. Access Port Input Timing

The Probe Port

Overview

The probe port provides a digital interface for dynamically observing the values of
selected nodes while the SPROC chip is in operation, without requiring any
interruptions or hardware changes. This port is useful for interactive design
debugging and verification. The probed node's value is output in digital
representation.

3-57

)
c
=4
©
o
N

(&)
=}
©
o
=
a

Technical

Data

ejeq
leatuyda |

R
-
o
Q
c
0
-

w
8
=
3

@«

The SPROClab development system supports interactive probing via the
SPROCDbox interface unit and the SPROC chip's probe port. The user exercises this
control from the workstation console, without requiring detailed knowledge of
the compiled SPROC chip program or the probe port configuration and timing.

Functionally, the probe port contains three major subsections:

e input match circuitry

e adata flow manager

* gain adjustment circuitry

The address of the node to be probed is loaded into an | address register of
the input match circuitry. On each internal write strobe, the address register's
contents are compared with the internal SPROC chip RAM address bus (except

when the probe port is disabled). Whenever a match occurs, the corresponding
data on the data bus is latched and entered‘m he port's output buffer.

The port's data flow manager is essentxally 1dent1cal to that of a serial port; most
configuration options for a serial port are also available for the probe port.

The gain ad]ustment c1rcu1try se‘lects;zthe bit range of the output node values. An
internal gain register is loaded with a number between 0 and 15, inclusive, which
speaﬁes the number of tin haf the node's value must be shifted left (multiplied
by 2) prior to bemg output

Operation and Cor"i:ﬁ»guration

While the development system provides a convenient and easy-to-use interface
for debugging designs, it may sometimes be desirable to monitor node values
when the SPROC chip is operating in its targeted environment. This section
provides the information necessary to support this debugging mode.

The probe port pins are:

e clock -- PROBCLOCK
e data out (digital) -- PROBDATA
e strobe -- PROBSTROBE

3-58

PROBCLOCK, the clock signal, is always generated by the SPROC chip. Its
frequency is 25% of the master clock frequency.

The probe port is enabled simply by configuring a FIFO with non-zero buffer
length.

The address of the node to be probed is input, via the parallel port, to the internal
address match register. Whenever a new node is selected for probing in this
manner, the data flow manager is completely reinitialized (registérs.
counters are cleared, and FIFO pointer reset to its start addres§)i:

Data

o
)
°
Q
a

Technical

&
c
o
3
2}

On an internal write, when the address on the internal SPROC chi

bus agrees with the contents of the address match register, the data flow manager
writes the corresponding RAM data bus value to the next available FIFO buffer
location. When the FIFO is half filled, the port'sTun regxster is automatically set,

1 count. Each node value sample is
ister prior to being output at

half-filled.

Since the data flow ’_ihanager fills the FIFO buffer as well as outputs its stored

input section are in the contiguous memory-mapped region beginning at hex
address 480. Similarly, the registers for the output section begin at hex
address 488.

Since the input and output FIFOs occupy the same physical memory locations,
the input and output sections must be configured consistently:

e product of buffer length (addr0) and index (addr1) of input section
must equal FIFO length of output section (addr1), and

e the FIFO start address (addr2) in both sections must be identical.

3-59

Probe Port Configuration Registers

Tables 3-18 and 3-19 describe the seven registers, addr0 through addré, that define
the configuration of the probe port.

Table 3-18. Probe Port Configuration Registers

INPUT OUTPUT
REGISTER
R | addro 9 FIFO buffer length | N/A
addr1 4 FIFO index length FO length
addr2 12 Same as input
addr3 12 Port setup register
addr4 4 Decimation register
addrS N/A Run register
addré N/A N/A s 24 Wait trigger mask

3-60

Table 3-19. Port Setup Register (addr3) Bit Definitions

BIT FUNCTION
0,1 Sets data width
bit1 bit0 data width
0 0]
0 1
1 0
1 1
2 T e irst
3 | long strobe
4 continuous clock
5
6 non-inverted clock®
7 non-inverted strobe
8 non-inverted msb

* inverted clock -- data changes on negative edge
non-inverted clock -- data changes on positive edge

3-61

o
c
o

©
Q

]

Probe Port Signal Table
Table 3-20 lists the probe port signals.

Table 3-20. Probe Port Signals

SIGNAL TYPE DESCRIPTION

PROBCLOCK (®) SPROC CHIP-SUPPLIED CLOCK prowdes the timing
for the serial output port (master clock:
divided by 4). Clock can be gated

-—f
8
T
2.
0
=2

1onpoid
:g uonodag

PROBDATA (e} SERIAL OUTPUT DATA car
words, msb- or Isb-first;
negative clock edges;inverted'msb (for offset binary
format) or twos- campiement format.

PROBSTROBE o

or.non-inverted (data valid when HIGH)
A short strobe is a pulse at the active level
e arial clock cycle wide prior to the first valid data bit.
: iong strobe remains at the active level from the first
valid:data bit through the last.

3-62

Probe Port Timing
Table 3-21. Probe Port Timing

SYMBOL |PARAMETER MIN MAX [UNIT |TEST CONDITION

torco Delay time: active 0 30 ns
PROBCLOCK edge to
valid PROBDATA data

toPCsLF Delay time: active 0 20 ns
PROBCLOCK edge to
long strobe fall at |
PROBSTROBE :

toPCLSR Delay time: active 0 20 |ns
PROBCLOCK edge to

long strobe rise at

PROBSTROBE

Data

8]
=]
T
[e]
P
a

Technical

&
c
)
©
o
(72}

torcssF Delay time: active 0. .}20 ns
PROBCLOCK edge to T

short strobe fall at
PROBSTROBE

torcssp | Delay time: active .. {0 20 ns
PROBCLOCK edgs'to .. -
short strobe rige at':.
PROBSTROBE

twrc SGUa‘CTGck E ; 4 toyk
PROBECEOCK period

tWPCH Serial clock 0.5 tCYK
PROBCLOCK high time

3-63

twpcH
—
PROBCLOCK | i
<4 _ o
§ ’g_ (LONG) —»| pe—toPCSLR
g: : PROBSTROBE
(SHORT) ™ torcssk
PROBSTROBE __| ‘[
—
topcssh ¢
—»l pe— torcD
prososs RRRwes X X

nyerted.

NOTES:
th Totig and short strobes, these options are mutually exclusive.

1. Clocks and strobes are shown r
2. Although timing is shown: ol

Figure 3-16. Probe Port Timing

3-64

Electrical Specifications

Basic Specifications

Table 3-22. Absolute Maximum Ratings

SPECIFICATION ABBREVIATION RATING

Power supply voltage range

&
Input voltage range Vi ;§
Output current lo s
Operating temperature range Topr
Storage temperature range Tsta

SYMBOL MAX N | B o

Vi 0.8 Vv

Vi valtage | 2.0 Voo v

VoL out voﬁage 0.4 v loL =2mA

VoH output hlgh voltage | Vpp-0.4 v loy = -400pA

h input leakage 10 HA 0<V,<Vy)p
current

loL output leakage 10 HA o<V, <V,
current

ibp supply current 300 mA 50 MHz

*Tpo=0°Cto 70°C, Vpp = 5V +/-5%

3-65

Table 3-24. Capacitance*

SYMBOL | PARAMETER MIN MAX | UNIT | TEST CONDITION

C input capacitance 10 pF (See note below)

Co output capacitance 10 pF

Cio input/output 15 pF
capacitance

1onpoid
1€ UoI23g

—‘
o
o
T
3
o
=

NOTE: f. = 1MHz, unmeasured pins at OV.

*Ta=25C

3-66

General Timing Specifications

Table 3-25. Master Clock Timing

TEST
SYMBOL | PARAMETER MIN MAX | UNIT CONDITION
toyk clock cycle time 50 ns . SPROC

“14xx-5X

e clock fall time 0 5 ‘;é’ 53
.= O
tkr clock rise time 0 5 ns gL fd
%2} o
twkH clock pulse width (teykmin) / 2) - ns
high (twkr + twkr / 2)
twKL clock pulse width (toyiqmin) /2) -] 0 I ns
low (twikH +twkL 72) |

Bk twkL

—» e~ ¥ e

1% tkr

Figure 3-17. Master Clock Timing

3-67

Table 3-26. Input Timing

SYMBOL | PARAMETER MIN MAX | UNIT | TEST CONDITION

Y input fall time 100 ns

100 ns

tir input rise time

-
@
(2]
T
2
[
2

1onpoid
g uonag

SYMBOL _ TEST CONDITION
tpsT reset puise width 25 tovk
trec reset recovery time 200 ns

3-68

oW,
)’&s‘a’}’ ?0?0?0’0‘.«’6!‘:

Figure 3-19.

Reset Timing

3-69

Section 3:
Product
Technical

eleg
|esluyoa)

)
-
o
Q
c
2]
~

w
[v']
(2]
=2,
o
3
w

Additional Specifications
Chip Naming Conventions

The following conventions are used to determine part numbers for SPROC-1400
digital signal processors:

SPROC1xyz-ab

b identifies the packags type

[aidentifies the speed range
2 =20 MHz

- y identifies the ROM or RAM version
(currently reserved)

L Xidentifies the number of GSPs

-——— > This digit identifies the SPROC chip series

3-70

Pin Configuration

Figure 3-20 and Table 3-28 detail the pinout of the SPROC-1400 digital signal
processor.

1 cS8q
ATOOOOODOOOOO0O0O00O G
B|OOOO0O0O0000000O
c | ooooooooooooo0o0
c1299 .0 o009
E| 00O oXeXe)

F|looo o XeXe)
G| ooo 0o0oO0
Hlooo " 00 0
J|ooo oXeXe
K | 000 000
L | o 00O
M| o 00O
N |0 00O
Pio 000

Figure 3-20. Pin Configuration for 132 Ceramic Package

3-71

—
(3]
[e]
=g
3
(¢}
A

1onpoid

g uondag

Table 3-28. Pin Designations

3-72

SIGNAL PIN SIGNAL PIN SIGNAL PIN
ACLOCK B10 [COMPUTE[2] [C11 DATA[2T] N3
ADDRESS[0] |N10 COMPUTE[3] |A12 DATA[22] M4
ADDRESS[1] _|P11 CRESET c12 DATA[23] |P3
ADDRESS[2] |P10 TS N14 T [M12
ADDRESS[3] |M9 DATA[0] B1 M1
ADDRESS[4] |N9 DATA[1] C2 N12
ADDRESS[5] |P9 DATA[2] D3 H3
ADDRESS[6] |P8 DATA[3] C1 G3
ADDRESS[7] |N8 DATA[4] D2 B2, B7,
ADDRESS[8] |M8 DATA[5] 3113 : <I>:3ia
ADDRESS[9] M7 DATA[8] H2 H1z
ADDRESS[10] |N7 DATA[7] K1 K12,
ADDRESS[11] |P7 DATA[8] L13, N2,
ADDRESS[12] |P5 DATA[9] gg- N13,
ADDRESS[13] |N5

P[0

ADDRESS[14] |M5 gP{ 1} g:
ADDRESS[15] |P4

GP[2] cs
ARXD A10 & =
ARXSTR Co [DATA[4] e e
ATXD BS TDATA[15] N1 NODEL] e
ATXSTR A9 DATA[16] M2

MODE[1] M10
[BUSGRANT _ |L12 DATA[17] K]

MODE[2) NT1
BUSY P14 DATA[18] P1

PROBCLOCK |D14
COMPUTE[0] |A13 DATA[19] M3 FroEA— 5
COMPUTE[1] |B12 DATA[20) P2

Table 3-28. Pin Designations (Continued)

PIN

SIGNAL PIN SIGNAL PIN SIGNAL
PROBSTROBE [C14 SNCPULSO[0] [E14 STXSTROB[] [A14
RD Cio SNCPULSO[1] |F12 VDD A4, A7,
RED A1 SRXCLK(0] H14 B13, E12,
RESET 14 SRXCLK[1] |G14 ﬁ:fﬁ‘,
RTS[0] A6 SRXD[0] 713 k2 L1,
RTS[1] B6 SRXD[1] G12 M6, N4,
RTS[2] Cé SRXSTROB[0] |J14 P12
RTS[3] A5 SRXSTROB[1] |G13 o :‘1‘3;\2
SELA a1 STXCLK[0] H13 A2,
SELB 72 STXCLK(1] |Fi4 CONNECTED gi: gg:
SELC J3 STXD[0] B14 C4,C5
SNCPULSI[0] |K13 swXo(1] ___|D12.

SNCPULSI[1] [K14 STXSTROB[Q] . [C1d:

3-73

o
c
2
°
o
[0}

[&]
=
©
[e]
P
a

Technical

-
1]
(2]
T
3
[
-2

£ uonoasg

R

3-74

SPROCIlab Overview

SPROC chips are supported by the PC-based SPROClab development system
that allows a designer to directly program the devices graphically by creating
system-level block diagrams constructed from a library of familiar analog and
digital signal-processing functions. In this fashion, even the most complicated
ssoftware can be implemented within a few hours. Using SPROCdrive interface
software, the development system supports interactive probing, debugging, and
modification of SPROC devices running in target systems.

The SPROClab development system includes all the tools that an engineer needs
to program a SPROC chip. It consists of a user supplied workstation (currently an
IBM PC) that runs STAR’s proprietary ssoftware and is coupled, via an RS232
port, to the SPROC development interface (SPROCbox). The SPROCbox contains
the interface circuitry required to connect the emulator to the development
workstation and target system. The development system itself is based on
proprietary partitioning and optimizing algorithms that:

e have been developed specifically for signal processing;

* automatically control the partitioning and balancing of processing
loads among multiple processors using unique signal-analysis and
allocation algorithms;

* enable the generation of highly efficient SPROC machine code from a
system block diagram; and

* interact with aspects of the SPROC architecture to support real-time
parametric control in systems requiring self-adaptive signal
processing.

The SPROC signal processing tools convert system block diagrams to short (2 - 4K
bytes) files that contain the SPROC machine code for the system. The conversion

process typically takes minutes, enabling a powerful iterative, interactive design

process.

fadp)oTa Vol KNG | . e =

SPROClink software provides an interface between the SPROC sys
microprocessor development system.

&
c
2
I3
o
[0}

=
O_U
ac
O.C
L8
a

©
-
)
(@]

The following steps describe the general process required to develop signal
processing designs using the SPROClab development system:

1. Define the signal processing application and determine design requirements.
2. Capture the design as a signal flow diagram.
3. Define any necessary filters and transfer functions.

4. Convert the diagram and definitions into code and generate a load for the
chip.

—
[
(2]
=
3
(2]
[

1onpoid
ig uonoag

5. Load, run, and debug the design on the chip in real time.
6. Incorporate changes from debug into the design diagram.

7. Convert the revised diagram and definitions into code and generate an
updated load.

8. Port the design into your actual application.

The following figure shows a diagram of the development process. The
subsections that follow provide a general discussion of the steps in the process.

3-76

eleq
|estuysa

19npoiy
‘g uonodag

W3LSAS LNIWdOT13A3Q GBID0HdS
3H1 30 3aISLNO d3131dNOD

Wvdovia
SIAIY NoIS3a SNOILONNA
LIEE] WvdovIa H34SNVHL NoIS3q
ANV ‘NnH 1H3ANOD AONV
‘avol SH31114 3"NLdvO
aNI43a
®

3-77

The Development Process

—
)
o
T
E)
I
-3

1onpoid

1g uonoasg

Capturing the Design

The development system’s SPROCview graphical design interface enables a
simple graphical approach to design capture. Capturing your design consists of
entering the design as a signal flow diagram. To enter the diagram, you arrange
and connect icons that represent processing functions into a schematic diagram
that defines the signal flow of your system. As you select and place the icons, you
must also enter certain variables, or parameters, that define how the functions
represented by the icons will operate. For example, if your design includes an
amplifier function, you must specify its gain value.

Some functions, like filters and transfer functions, are too complex to be defined
using simple parameters. For these functions, you must create a separate data file
that includes the detailed definition of the function. When you use a filter or a
transfer function in a diagram, you must enter a parameter to identify the data file
that contains the definition of the function.

The schematic diagram and its associated definition data files are the
representation of the design upon which all other steps of the process build. You
should consider them the base record of the design, and always make sure they
are current.

Defining Filters and Transfer Functions

In designs that include filters or transfer functions, you must create the data files
that specify the definition of the functions. The SPROCil filter design interface
provides an interactive environment for designing filters. You must define
transfer functions using a text editor.

Converting Diagrams

After you capture the design and define any necessary filters or transfer
functions, you must build the diagram and definition data files into a load that
can run on the chip.

Each time you modify the diagram or the definition data files, you must re-build
to convert the files again and produce an up-to-date load file.

3-78

Loading, Running, Debugging, and Verifying Designs

To debug and verify your design, transfer the load file onto the chip and run the
design. The SPROCdrive interface (SDI) allows you to write the load to the chip
and begin design execution. Using SDI, you can evaluate design performance by
accessing the value of data in chip memory. If your development system is
connected to an oscilloscope, you can view the waveforms represented by this
data. If your development system is connected to a target analog subsystem, you
can see how the design performs in the actual application.

To optimize your design, you can modify the values of data and observe the
corresponding changes in design performance. If your development system is
connected to a signal generator, you can simulate various input signals and
evaluate how your design reacts.

(8]
=}
©
o
o
a

Technical
Data

&
c
o
©
S

N

Changes you make to design parameters using SDI are temporary. You must
modify the schematic diagram and/or definition data files, then build the files
and generate a new load file to make design modifications permanent.

Porting the Application

Once you have debugged and optimized your design, modified the diagram, and
generated the final load file, you can port your signal processing design for use in
your end application.

If the application is to run from a self-booting chip, you can use the load file to
burn an EPROM, and place the chip and its EPROM on to your specific printed
circuit board.

If the application is to run from a microprocessor, the SPROClink microprocessor
interface (SMI) helps you to develop a microprocessor application that can use the
signal processing design. You must generate a special version of the load file, use
an embedded systems design tool to create the microprocessor application, and
memory map the SPROC chip into the microprocessor configuration.

SPROCIlab Components

The development system comprises both hardware and software tools designed
to help you complete the development process. These tools were designed in

3-79

parallel with the SPROC chip to extract maximum efficiency and performance
from the chip without compromising ease-of-use.

Hardware
Each hardware component is listed and described below:

¢ SPROCboard evaluation board

The evaluation board is a printed circuit board with one SPROC chip,
digital-to-analog and analog-to-digital converters, and various
communications interfaces and additional components and circuity
necessary to evaluate signal processing design performance during
development. You can connect an oscilloscope, signal generator, or
analog subsystem to the evaluation board to verify and evaluate your
design.

]
I
[¢]
T
3
o
=3

1onpoid
g uonoasg

For details on the evaluation board, refer to the SPROCboard Evaluation
Board Reference Manual.

e SPROCbox interface unit

The interface unit provides an I/O connection between the
SPROCboard evaluation board and your PC. It also connects the
evaluation board to the power supply unit.

“For details on the interface unit, refer to the SPROCbox Interface Unit
Reference Manual.

* Power supply unit

The power supply unit converts AC power from a standard wall outlet
to 5 VDC and +12 VDC to supply interface unit and evaluation board.

e Interface cables

An RS-232 cable connects the PC serial I/O port to the SPROCbox
serial I/O port.

A special access port cable connects the SPROCbox interface unit to
the access port on the SPROCboard evaluation board.

3-80

For more information on the interface cables, refer to the SPROCbox
Interface Unit Reference Manual.

Software security key

The security key connects to the PC parallel port. It enables use of the
software.

Power cables

A power cable connects the power supply unit to the AC outlet.

&
c
Q
©
@
[0}

An auxiliary power cable connects the power from the SPROCbox to
the evaluation board.

3-81

o
=
©
o
o
Q

Technical

w
3 =
3 3
N
3 &
& b
. JO— SPROCbox g POWER
oG INTERFACE SUPPLY
UNIT UNIT
-t 7]
[4] (s
0 0
T =
3 o
a' 3
220
ACCESS PORT CABLE AUXILIARY POWER CABLE

SPROCboard
EVALUATION
BOARD

SPROC
CHIP

SIGNAL
GENERATOR*

ANALOG

OSCILLOSCOPE SUBSYSTEM®

*

-- USER SUPPLIED
% --1/0 CONNECTION

D — OPTIONAL

SPROCIab Development System Hardware

3-82

Software

Each software component is listed and described below:

SPROClab development system shell

The development system shell is an MS-DOS shell that provides
access to all development system software components from a
selection menu. The shell controls function calls among development
system software components and provides a means for you to change
certain system defaults.

In some optional development system configurations, the
environment shell is not necessary. All development system software
components are available through menus or other methods in the
optional environment. (For example, in systems using the VIEWIogic
environment, all development system software components are
available through customized menus in the VIEWIlogic tool
Workview.)

SPROCview graphical design interface

The graphical design interface provides for easy creation of
signal-flow block diagrams by supporting the importation of designs
created using several common schematic capture packages.

The basic development system configuration supports version 4.04 of
the OrCAD schematic capture tool DRAFT. The graphical design
interface includes the library structure required to use the
SPROCcells function library with the DRAFT tool. This tool is not
supplied as a part of the graphical design interface. You must
purchase it from OrCAD separately.

In development systems with STAR’s VIEWIlogic option, the
SPROCYview graphical design interface supports importation of
designs created using VIEWIogic tools.

3-83

&
c
=t
©
Q
2}

o
=}
©
[e]
e
a

Technical

Data

-
@
[e]
T
E
(<]
=2

10npoid

1 uonoasg

SPROCcells function library

The function library includes cells containing DSP and analog signal
processing functions for use in diagram creation. A library cell is a
design primitive that includes an icon required to place a function in
a signal-flow diagram, the code required to execute the function, and
specifications for the parameters required to define the cell.

For details on the cell library, refer to the SPROCcells Function Library
Reference Manual.

SPROCil filter design interface

The filter design interface supports the definition and analysis of
custom digital filters. The filter design interface creates the custom
code and definition data for generic filter cells placed in designs
during diagram entry.

SPROCbuild utility

SPROCbuild converts signal-flow block diagrams and their
associated definition files into the load files necessary to run on the
chip. SPROCbuild interprets the output from schematic entry and
incorporates associated code blocks and parameter data for cells,
filter design definitions, and transfer function definitions, then
schedules and links the instructions to best utilize resources on the
chip. The utility automatically generates efficient code based on your
signal-flow block diagram.

SPROCdrive interface

The SPROCdrive interface (SDI) loads the design onto the chip and
starts execution. SDI commands give you access, through the
SPROCbox interface unit, to interactively test and debug the design
while it runs on the chip. You can probe and modify signal values and
design parameters to tune and optimize your processing subsystem.

3-84

e SPROClink microprocessor interface

The SPROClink microprocessor interface (SMI) provides software
components necessary for you to develop microprocessor applications in
ANSI C that include the SPROC chip as a memory-mapped device.

For details on SMI, refer to the SPROClink Microprocessor Interface Reference
Manual.

. SPROCsim simulator

SPROCsim provides a software simulation of the operation of the SPROC
chip. It includes a command-driven user interface to the virtual chip.

&
c
o
©
o
[}

SPROCHil
FILTER
DESIGN
TOOL
USER-
pEFINED [P DATA
CEUS SPROCdrive
ICONS P> INTERFACE
—®| SPROCbuild
SPROCview UTILITY
GRAPHICAL NETLIST CONFIG
DESIGN ’
INTERFACE
SPROClIink
T MICRO-
—® PROCESSOR
ICONS DATA INTERFACE
SPROCcells
FUNCTION CODE ggﬁfﬁso
CELL LIBRARY] DEFINED

FUNCTIONS

NOTE: THE DEVELOPMENT SYSTEM SHELL IS NOT SHOWN.

SPROCIab Development System Software Components

3-85

Technical

_‘
@
o
T
=
o
-3

£ uonoasg

3-86

SPROCIab System Hardware

SPROCbox

SPROCbox provides a bi-directional communications interface between the PC
and SPROC chip. When used in conjunction with PC-resident SPROCdrive
ssoftware it enables the designer to access the SPROC device for program
downloading and for configuration and application debugging. All PC user
requests to the SPROC integrated circuit are serviced by this interface.

Q
3
©
o
a
a

Technical
Data

o
c
e
©
©
w

Features

* Microprocessor-controlled asynchronous serial PC interface and
synchronous serial SPROC interface (access port)

¢ EIARS-232C/CCITT 0.24 compatibility
* Power-up diagnostics/selftest

e Supports 1200, 2400, 9600 and 19200 based operation (default rate,

9600 baud) on R5232C port.
* Built-in custom serial interface signal cable for communicating to a
SPROC chip.
Description

SPROCbox consists of a microprocessor, associated RAM and ROM storage,
asynchronous serial interface to the PC, control logic, and a synchronous serial
interface to the SPROC access port. The microprocessor processes commands
received from the PC and generates commands to the SPROC access port. A
DB-25 (female) connector is provided for the EIA RS - 232C compatible PC
interface.

3-87

[}

1

1

]

]

m]

weiboid "

]

T ¥ “

" ¥ “

_ o eoepelu| lagml—| WOHJ3 !

! o0HddS Av._ g Y mmtmooz_\ weiboid "

_ ¥ |

“ [|

! pieog uojienjeay r_l !
U |J.._w.wnmu|0|m_m_|w|" — 49110/U0) @—P>| 2E€2-SH P

]

|

"

* X0@D0HdS
Addng Jemog

Section 3:
Product

Technical
DETE]

SPROCDbox Interface

3-88

The access port interface is a custom serial interface specifically designed for
communicating to a SPROC device. A cable with a universal 14-pin header is
provided from the SPROCbox carrying TTL signals as shown.

HEADER FUNCTION

1 RECEIVE DATA (INPUT)

2 RECEIVE STROBE (INPUT)

3 TRANSMIT STROBE (OUTPUT)
4 TRANSMIT DATA (OUTPUT)

5 SERIALCLOCK (OUTPUT)
6

7

(8]
2
©
o
e
a

Technical
Data

&
c
)
©
o
(%2}

RESETB (OUTPUT)

Not Connected
8-14 GROUND

RESETB (pin 6) has a series resistance of nominally 560 ohms which enables a
user’s circuit to overdrive this reset if desired.

The SPROC access port is intended for use by the SPROCbox but may also be
used by the user’s application. Timing specifications for the access port are given
in the SPROC Signal Processor Data Sheet.

Power Connectors

Two identical 5-pin connectors are provided on the rear of the SPROCbox. The

connector marked as POWER IN should be connected to the supplied tabletop
power cnnnlv The connector marked POWER QUT should be connected to the

UVVTI S T LUiuitLwUs IR AT 2 VALIN /W 2 OraiUAIE UL LURIITU TR U T

SPROCboard with the supplied daisy chain power cable. If the tabletop power
supply is not used, refer to the following table, which specifies the configuration
of the 5-pin type power connector.

3-89

—
1]
(2]
¥
:.
(2]
2

1onpoud
1§ UoNO3ag

PIN VOLTAGE SUPPLY
1 GROUND
2 Not connected
3 +5V 2.0A
4 -12V 0.5A
5 +12V 1.5A

Reset Switch

A rear panel momentary action reset switch is provided in case of a system
malfunction. If the reset switch is activated while an application is being
debugged, it will be necessary to download the application to the SPROC device
again before resuming the debug session.

Power Requirements

The supplied tabletop power supply is sufficient to power both the SPROCbox
and SPROCboard.

Power Supply (included): 115/230 Volts, 50/60 Hz

+5V, 1.5 amp; +12V, 1.5amp; -12V, 0.3 amp

PC Interface
EIA RS-232C/CCITT 0.24
supports 1200, 2400, 9600 and 19200 baud operation; default is 9600

3-90

Physical dimensions:
LxWxH=90"x73"x15"

Weight = 2 Ibs., 7 oz.

™ 5]
c Q
) c
= 9 £
o [3)
© <
1

3-91

Section 3:
Product

Technical
Data

3-92

SPROCboard Evaluation Board

Description

The SPROCboard is a versatile evaluation system. The SPROCboard requires a
power source and a SPROCbox to provide a development interface to a PC.

The SPROCboard supports both standalone (master) and embedded
microprocessor (slave) operating modes. In master mode the SPROC processor
will automatically upload a program from the boot EPROM on the development
board. In slave mode, the SPROC is configured via a microprocessor development
system connected to the SPROCboard parallel port connector. Two SPROCboards
may be interconnected as a master/slave SPROC configuration via the parallel
port connector.

8]
3
Rl
o
o
a

Technical
Data

o
c
2
©
o
(%2}

In the following figure, a block diagram of the SPROCboard shows its major
sections and interface connections, which are subsequently described in greater
detail. The board features a dual 16-bit analog-to-digital and digital-to-analog
converter system. The system includes input anti-alias filters, 8th order output
reconstruction filters, and independent sample rate generators for each converter.
The board also contains a 4th order reconstruction filter for the on-chip probe
digital-to-analog converter and a general purpose nibble wide, bidirectional
interface port (GPIO port).

Analog Interface

The SPROCboard has two Crystal CS5317 16-bit A/D converters connected to
serial input ports 0 and 1 of the SPROC 1400 signal processor chip, and two Burr
Brown PCMS56 16-bit D/ A converters connected to serial output ports 0 and 1.
The A/D converters are of the sigma delta design and require minimal anti alias
filtering. A single pole RC filter is included on the board for this function. The
D/ A converters have 8th order 0.1dB ripple Chebyshev reconstruction filters,
factory set with a 6kHz cutoff frequency. The filter cutoff frequency may be
changed by the user by scaling the value of 12 equal valued resistors. The nominal
resistor value is 3.3kOhm for a 6kHz cutoff frequency. The maximum sample rate
of the A/D converters is 20 kilo conversions per second(kcps). The nominal 6kHz
filter cutoff frequency was chosen to allow SPROC system designs with output
harmonics extending to one half of Nyquist rate (5kHz). The unfiltered outputs of
the D/ A converters are provided to allow the user to bypass the on-board
reconstruction filters.

3-93

HOLVH3INIO
4d1
H3QHO-HLY

4d1
4 H30HO-HL18

4d1
< HOSS3004d H3QHO-H18

VNDIS (3(11noova

00HdS

R :
SVITV- LLNV (J(__enoay

PARALLEL
PORT

H3.1d

SVITV- ILNV
HOLVH3IN3O ONINIL

31vH 37dWVS avno

SHOLVINO3Y AS /+

PNIXTO ENIMTO SNIMTID E NIXMTO
ACl- QAONSV At ANSQ NS+

Section 3:
Product
Technical
Data

SPROCDboard Block Diagram

3-94

Input/Output BNC connectors
e ADCinl: ADCI1 analog input connected to serial input siport0.
e ADCIN2: ADC2 analog input connected to serial input siport1.
¢ DACOUTI1: DACI analog output connected to serial output soport0.

. (unfiltered staircase waveform);

* DACOUT2: DAC2 analog output connected to serial output soport]. g 3

. (unfiltered staircase waveform); g é % ;2
e OUTI: filtered DAC2 analog output. 55"

o (reconstructed continuous time waveform);

e OUT2: filtered DAC2 analog output.

. (reconstructed continuous time waveform);

PROBE: filtered SPROCprobe analog output.
. (reconstructed continuous time waveform);

(Note: An unfiltered probe output waveform is available at test point TP1. This is an
unbuffered signal intended for a high impedance, low capacitance scope probe
monitor point).

SPROCboard Sample Rate Selection

The conversion rate of the A/D converters may be independently controlled in 7
binary divisions from 19.53kcps to 152.6cps(19.53kcps/128) using 3 DIP switch
settings per channel. Alternatively, the conversion rate may be controlled by an
external clock frequency. Prescaling is required for the sigma delta A/D converters
which use oversampling. If the external clock frequency is 10.24MHz, then the
maximum sample rate would be 10.24 MHz/512 or 20kcps. The sample rate
dividers operate with both internal and external clock source. For the above
external clock source, the minimum conversion rate would be 20kcps/128 or
156.25¢cps.

3-95

—
1]
(2]
T
=
(2]
L

1onpougd
1g uonoasg

D/A Converter Transport Clock Selection

The sample rate of the D/ A converters is controlled by the SPROC output port
configuration. The serial interface transport clock is provided by the analog
board. This clock rate must be high enough to support data transport from the
output serial port to the D/ A converter at the desired sample rate. It is
recommended that the transport clock is greater than 32x the sample rate of the
serial port. In external clock mode, the D/ A converters DAC1 and DAC2 use
external clock inputs “‘CLKIN3’ and ‘CLKLIN4’ respectively. In internal mode, the
clock source is one half that of the 20MHz board crystal oscillator frequency. The
maximum rate is one half that of the clock source and the minimum rate is 1/16th
that of the clock source. A per channel 2 bit DIP switch setting determines the
divider rate of each channel.

SPROC Configuration Switches

The SPROC signal processor is configured via a DIP switch setting. This switch
enables the user to configure the SPROCboard for master or slave operation. In
slave mode, the configuration of the parallel port is determined by three mode
switches. The SPROC signal processor may be driven by an external clock source
or it may use its internal ring oscillator. The EXTINTBCLKP switch selects
between the two clock modes. If external clock source is selected, then either the
on-board crystal oscillator or an external clock source applied to BNC connector
EXTCLK is used. A board jumper selects between the two external clock sources.
The precise frequency of the internal oscillator will vary from chip to chip and is
sensitive to supply voltage and temperature. The SPROC Signal Processor Data
Sheet should be referenced for more detail.

3-96

Board Connectors

o PARALLEL PORT connector

This connector provides direct access to the SPROC parallel port data
and address buses. The port is unbuffered and consequently the user
is referred to the SPROC electrical specifications for drive and load
details.

e ACCESS PORT connector

chnical

This connector provides a communication link between the
SPROCbox and the SPROC chip. The link supports interactive
configurations, probing, and debugging using the SPROClab
development system.

o

&
c
2
I3
[
N

Te

Header Connectors

* General Purpose Interface Connector

This header/connector is used to interface with the SPROC General
Purpose Input/Output port (GPIO). This port is a quad bit-
configurable interface. The port configuration is soft configured by
the SPROClab development system.

This connector is also used to interface with the SPROC compute
trigger bus inputs and the SPROC RTS (Request To Send) flags.

3-97

-
4]
(o]
¥
3
[¢]
[

1onpoid
‘g uonoag

Factory-set default switch and jumper settings will configure the SPROCboard for
normal operation at the maximum 19.53kcps provided by the on-board crystal
oscillator clock source.

SPROCIab Configuration

The SPROCboard is designed to be fully compatible with the SPROClab design
tool suite. The serial ports of the SPROC 1400 signal processor chip, have been
designed to be highly configurable to allow a wide selection of industry standard
converters to be used without external interface hardware. The default mode of
the serial port cells supplied with the SPROCview schematic entry system, are
compatible with the A/D and D/ A converters used on the SPROCboard.

To connect to either of the SPROCboard A /D converters, the user is only required
to instantiate a serial input port cell and enter two parameters in the icon
parameter edit field. The sample rate (rate = ?) and the trigger source

(trigger = port?) must be specified. The sample rate must match the conversion
rate set on the SPROCboard for the selected A/D converter. The port number
entered selects which of the A/D converters is to be used as input; siport0 selects
ADC1 and siportl selects ADC2.

To connect to either of the SPROCboard D/ A converters, the user is only required
to instantiate a serial output port cell and enter a single parameter in the icon
parameter edit field. The destination port number (dest = port?), specifies which
of the two SPROCboard D/ A converters is to be used; soport0 selects DAC1 and
soport1 selects DAC2.

The user is referred to the SPROClab Development System User’s Guide for more
detailed information on design entry and for details on design examples which
may be downloaded and run on the SPROCboard.

3-98

Electrical & Mechanical Specifications

Analog Specifications
CS5317 A/D converter:
resolution:

differential nonlinearity:
dynamic range:
impedance(1kHz):
range:

total harmonic distortion:

PCMS56 D/A converter:
resolution:

monoticity:

output voltage range:

dynamic range:

total harmonic distortion:

total harmonic distortion:

16 bits

+/- 0.4 bits
+/-2.75V
80KOhms
84dB

72dB

16 bits
15 bits
+/-3.0V
96dB
0.008%
0.04%

(no missing codes)
(typical)
(minimum)
(typical)

(typical)

(minimum)

(typical
(typical)
(typical)

(maximum, Vo = +/-FS)

(maximum, Vo = -20dB)

3-99

&
c
Q
°
8]

[42]

-3
Q o
oc
£
o
£ 8
Q=

D/A output interpolation filter:

Filter prototype: Chebyshev 8th order lowpass, 0.1dB in band ripple
Implementation: 4 Rauch biquadratic sections.
passband gain: 0dB (nominal)

SinX/X compensation: NO

7o g cutoff frequency: 6kHz (nominal)
FQ =
§ g i Clock Specifications

Maximum external clock frequency 20 MHz

Mark to space ratio 1to1+10%

Input threshold is TTL and CMOS compatible

Power Connector
Pin1-
Pin2- 5 6
Pin3 - GND (black)
Pin4 - Analog -12V (purple) 3 4
Pin5 - Digital +5V (red) _——
Pin6 - Analog +12V (yellow) 1key2
(top view)
Power Rail (Volts) Power Current Requirement (Amps)
DIGITAL +5V (+/-5%) <1.00A
ANALOG +12V (+/-10%) <0.50A
ANALOG - 12V (+/-10%) <0.50A

3-100

Connectors

EXterNal ClOCKcucuimrimiuiniitcininiiinn st ses s st sssssssssssssesssssssssesesens BNC
Serial POt CIOCKS ...ucvunrtiniinctniiniinsetnicis e sssissr st ssansassessa s s sssssnssnacns 4 x BNC
PTODE OUL....ccuvvaniniirntiinisc st siesssssensessss s s sssssss s s sssenss s sssnssssesssassssssssssssassaeas BNC
DAC 0ut (filtered)cevvueeirrieciiiissinisciieiiisi s s ssssssssssssssssssses 2xBNC
DAC out (UNfIltEred)......cc.coviuimiirciinencniniaeeseissses s ssssssssssssssssssossses 2xBNC
ACD N ettt s s s s s s et baes 2xBNC
Parallel POTt.........oomimninniisininicisssne s e nsassanses 64-pin inverted DIN
GPIO POTt c..cournirniinnnrerniinisssisnssssssssssss s sssssssssssssssssess 24-position header (2 x 12)
Access POrtcooceeuenveninnnesicinen 14-pin universal ejection-style pin-header (2 x 7)

Physical dimensions:

LXWXH=92"X8.75" X0.63" Weight = 11b., 7 oz.

3-101

o
c
e
°
o
wn

(¢
=]
T
o
o
a

Technical

Data

SPROCIab Packing List

Your SPROClab development system includes the following components:

Hardware
Power supply
SPROCbox
SPROCboard

-
]
(2]
=2
=)
(2]
L

1onpoidg
1€ UoI23Sg

SPROC security key

Cables
AC Power Cord
Auxiliary power cable
Access port cable
RS-232 serial cable

Diskettes
Install 31/2and 51/4)
Libraries (31/2and 51/4)
SPROCfil 31/2and 51/4)

Documentation
SPROCIlab Development System Documentation Set includes:
SPROCIlab Development System User’s Guide

SPROCboard Evaluation Board Reference Manual

3-102

SPROCdrive Interface Reference Manual

SPROC-1400 Programmable Signal Processor Data Sheet
SPROCbox Interface Unit Reference Manual

SPROClab Development System Unpacking and Installation Guide
SPROCcells Function Library Reference Manual

SPROCIlink Microprocessor Interface Reference Manual

Data

8]
=
hel
[e]
-~
a

Technical

o
c
°
©
o
[}

SPROC Description Language Reference Manual

User-Supplied Equipment

You must supply the following equipment to complete the SPROClab
development system environment.

IBM PC (386) or compatible
Mouse

BNC cables

Signal Generator

Oscilloscope (optional)

Recommended PC Configuration

We recommend the following PC configuration for use with the SPROClab
development system:

CPU: 80386 (80387 is optional)
Mem: 5 Mbyte extended (including the base 640K)
1/0: 2 serial ports (Mouse and SPROC)

1 parallel (security key)

3-103

HDD: 40 Mbytes, with sufficient free space for
development system ssoftware (2 M, 6 M
with VIEWIlogic) and OrCAD software

FDD: 51/4in.,1.2Mor
31/2in.720K

Display: EGA/VGA (640 x 480)
-“_w
gl Keyboard: 101 key
2¢38
I Mouse: 3 button serial
Operating system: MS-DOS 3.2 or later

Hardware Installation

* Lay out the components.

e Connect the RS-232 cable to the PC COM2 connector and to the
SPROCbox connector labeled SERIAL PORT.

* Connect the SPROCAil security key to the parallel port on the PC.

¢ Connect the access port cable to the connector on SPROCbox labeled
ACCESS PORT.

* Connect the other end of the access port cable to the SPROCboard.
¢ Connect the power supply to the SPROCbox connector labeled

PWRIN.

¢ Connect the auxiliary power cable to the connector on the SPROCbox
labeled PWR OUT.

¢ Connect the other end of the auxiliary power cable to the
SPROCboard.

* Verify that the switch on the power supply is in the OFF position and
connect the AC power cord to the power supply.

¢ Plug the power cord into the wall outlet and turn the unit on. The
indicator on the front of the SPROCbox should light.

3-104

eieq

[BO1UYo3 |

1onpoid
g uonoag

QyO2 H3IMOd JV

HOLVUINIO NOLLONNS

3SNON
NOD
od
ZN0O
Q31ddNs ¥3sn . 1HOd 13TIVHvd
VLS A8 G31ddNS v
| Aanms
u Alddns
3 43mod
s
= ETRE auvos
X NOILYNIVA3 LINN
3d0OGOTINEO 37avo
10 - pwoaso
o uds 1HOd SS300V woﬁ_xw_““_
no N — 100
tuann 11 H3IMOd XNV
3804d

Stand-alone Configuration for Use with Test Equipment

3-105

ACOMP?

COMPRES

DELAY?

DELAY

EG

?
R_1DI

-4 =

—=—

MULT?
MULT

SINE?
—2 451N (00—

SINE

SUM?

SINK?

SINK

PAR_IN?

PAR_IN

3-106

AEXP? AGC? ALN? BIL? BIQ?
2 /1r 1 2| 1 2 ex 1 2 1 ﬂ,
XPAND AGC NTILN BILINEAR [
Mot DIFF? FILT? FILT? RECT
cM v ; :
- 0
2| d 1 2 U:L 1 2 t: 1 2 1
4 2 gt
- DIFF_LDI FILTER FILTER 0S
6 |5
LN? LIM? RECT? RECT?
2]n 1 2 F 1 2 EE:I_,_ 1 2 ,{'3:} 1
N HARDLIM ‘Fmﬁj 0s HWR_NEG
MINUS? MIX?
INT? INT? INT? MINUS MIXER
2| f 1 2| f 1 2] f 1 2 1 2 1
INT_LDI TNT_RECT NT_Z
3
NOISE? PLL? PULSE? Q0?2 SCALER?
1
1 2 1 SIN 2 1
L 1 boroo 12—
Yt B aisy i1l cosj—2— =
NOISE PLL_SOR PULSE QUAD_0SC ALER
SUM?
50? _ 2] SUM? SUM? SuM?
. P
2 U EER DI i - : =
PRI el = DI 5
SINE_0SC EhRE —2 —3 !
-~ SUM?
ﬁ 'l S0Ma EOMS —]
H .
SUM3
suM? suM?
SOURCE?
S GP. N? GP_OUT? 1
- SHE - LR -
GP_IN GF_ouT SOURCE
1
SUMB SUMO
TRANS? TRANS? UCOMP?
2l 2y 2= 47}2_&_
TRANSFNC TRANSFNC UCOMPRES
vca?
vCA
PAR_OUT? IN? ouT? B
' l> 1 \—1@
AR_OUT _IN SER_OUT 3

SPROCIab System Software

Development System Shell

In the default configuration, to get into the development system, you invoke the
development system shell from a DOS prompt. The shell controls function calls
among software components, and it displays a main menu that provides access to
development system ssoftware tools and system configuration settings.

In the optional VIEWIogic environment, you invoke the development system from
a customized VIEWIlogic menu. The SPROClab main menu does not appear,
although the functionality of the shell remains available through the customized
VIEW/logic menus.

Data

Q
3
©
[}
-
a

Technical

&
c
Q
©°
@
(%2}

When you invoke the development system shell, the shell checks the current
directory (called your work directory) for certain files that include configuration
information for development system software components. If the files are not
found in the work directory (i.e., if the directory is a new work directory), the
shell copies the files from the development system initialization area (determined
at installation) to the work directory. When you change system configuration
options using main menu features and save those changes, the shell modifies
your work directory copies of the files, not the original files in the system
initialization area.

When the development system copies all necessary files and completes
initialization, the main menu appears.

SPROCIab

Design name
wydesign

Please choose one of the following:

SPROCview SPROCE i1
SPROChaild SPROCs im
SPROCArive
Quit Pl - Help
rZ - DOS shell
F3 - Change design name

Search path
C:\SPROCN:

Copyright (C) 1991 by STAR Semiconductor Corporation

SPROCIab Development System Main Menu

3-107

-
(1]
[s]
4
2
(2]
=}

1onpoid

g UoN2ag

Entering a Diagram

You capture your signal processing subsystem design by creating a signal flow
block diagram that represents it. You create the diagram by using a schematic
capture package to arrange and connect signal processing functions, or cells, in an
order that represents the signal flow of the subsystem.

SPROCcells Function Library

The SPROCcells library of pre-programmed function blocks provides the basic
building elements to create the signal-flow diagram of the system under
development. You can create an unlimited number of complex, custom functions
by simply combining basic elements and modifying the parameter values of the
supplied primitives.

A cell is a design primitive corresponding to a specific block of SPROC
description language (SDL) code. The SPROCcells function library includes many
commonly used cells, and you can create additional cells in SDL code to meet
your own special needs.

Each cell has a graphical symbol, or icon, that represents the cell and illustrates the
number of inputs and outputs the cell uses. You insert a function into the signal
processing flow by placing the icon for that cell into the signal flow diagram and
connecting, or wiring, the icon to other icons in the diagram.

In addition, each cell has a set of parameters, that identify the cell and let you
define its detailed operational specifications. Most cells have parameters that
specify simple operational values, but some cells are more complex. For example,
filter and transfer function cells require data files to completely define their
operations. In such cases, the cell’s parameter does not define a simple
operational value, it specifies the name of a data file containing the definition.

When you insert the icon for a cell into a signal flow diagram, connect the inputs
and outputs, and specify parameters for that occurrence of the cell, you create an
instance of the cell. A cell instance includes the function, identification,
connection, and parameter definition for a single occurrence of a cell within a
diagram.

The SPROCcells library contains an expanding list of functional bulding blocks,
including amplifiers, multipliers, phase-locked loops, filters, and detectors. The
partial list of available cells is provided on the following pages.

3-108

ACOMPRES

The A Law compression requires a left-justified linear input value. This
value is converted to a left-justified, 8 bit A law encoded output value. The 8
bit output code has the format:

PSSSQQQQ
where
P = sign bit
SSS = 3 bit segment code
QQQQ = 4 bit quantization code.

o
=
O
o
Pt
a

The linear value is a fixed point, 13-bit, left-justified, two's complement
representation for integer values (4095 <= in <= +4095) with the leftmost bit
interpreted as the msb. The rightmost 11 bits are ignored.

Technical
Data

(o]
c
o
=
O
Q
%2}

AEXPAND

The A Law expansion requires a left-justified, 8 bit A law input format. This
code is converted to an integer in the +/- 4032 range as a left justified 13 bit
value. The 8 bit input code has the format:

PSSSQQQQ
where

P = sign bit
SSS = 3 bit segment code
QQQQ = 4 bit quantization code.

The output value is a fixed point, 13-bit, left-justified, two's complement
representation for integer values (4032 <= in <= +4032) with the leftmost bit
interpreted as the msb. The rightmost 11 bits are zero.

AGC

The automatic gain control (AGC) handles input signals from 0 to 48dB.
The level parameter determines the average agc output value, and the tc
parameter sets the time constant of the agc gain response.

AMP

The amplifier, multiplies the value of the input by the value of the gain
parameter.

3-109

ANTILN

The natural anti-logarithm of the input is calculated using the series
approximation:

antiln(x) = 1 + x + x"2/2! + x"3/3! + x*4/4! + x"5/5! + x"6/6! + x"7/7!
For x > 0.692, the output is clipped to 1.9977.

BILINEAR
This bilinear first order recursive filter has the following equation:
y(t) = al.y(t-1) + b1.x(t-1) + b0.x(t)

where x(t) = in, y(t) = out and (t-1) indicates previous sample.

eleg
[ealuyoay

7]
Pm
g =
o
(=4
03
~- W

BIQUAD
This biquad second order recursive filter has the following equation:
y(t) = a2.y(t-2) + al.y(t-1) + b2.x(t-2) + bl.x(t-1) + b0.x(t)

where x(t) = in, y(t) = out, (t-1) & (t-2) are the two previous samples.

CMULT
This complex multiplier cell performs multiplication of the form:

i+jq = (x+j.y)*(cos + j.sin) = (x.cos - y.sin) + j.(x.sin + y.cos)

DECIM

This cell decimates its input. The number of input samples per single output
is set by the factor parameter.

DIFFAMP

This differential amplifier, multiplies the differential value of the input by the
vaiue of the gain parameter:

out = (ina - inb) * gain

3-110

DIFFCOMP

This differential comparator with hysteresis produces an output of +/-1.0
according to the magnitude and sign of the differential input (ina-inb). If the
magnitude of the differential input is less thanthat of the hysteresis, the
previous output level is retained. If the magnitude of the differential input
equals or exceeds that of the hysteresis, the output shall have magnitude 1.0
with the same sign asthat of the differential input. Initial output state is preset
to +1.0

DIFF_LDI

[$]
=
©
o
-
a

Technical

&
c
Q
©
@
[7p]

The DIFF_LDI cell, outputs the difference between the input and the previous
value of input.

out = in - in(previous)

DSINK

The DSINK accumulates two series of input samples (each size determined
by the length parameter) into two blocks of data RAM. The blocks are
stored beginning at symbolic location ‘instance_name.outvector1' and
'instance_name.outvector2'.

DSINKRD

The DSINKRD accumulates two series of input samples (each size
determined by the length parameter) into two blocks of data RAM. The
blocksare stored beginning at symbolic location 'instance_name.outvectorl’
and 'instance_name.outvector2'.

A reset input is available: if >0.5 the cell is held in reset otherwise the cell can
capture a series of input samples. The done output is zero if the cell is reset or
capturing input samples, else the done output is one. The done output needs
to be terminated, either by another block or by a dummy module. Reset is
only effective when the sink block is full.

EXT_IN

The EXT_IN cell provides an external (off chip) input into the SPROC device.
Typically the external input cell is used in conjunction with an external
Microprocessor.

3-111

1onpoid
:g uondag

—
@
(2]
T
3
(o]
L

EXT_OUT

The EXT_OUT cell provides an external (off chip) output. Typically the
external output cell is used in conjunction with an external microprocessor.

FILTER

The FILTER cell is used for the implementation of filters designed with
SPROCHil. For each instance of this cell there must be an associated filter
design file produced by SPROCil, an .fdf file. This file is identified with the
spec parameter (warning: do not use the design name as the filter design file
name).

An optional type parameter allows filter type verification during the

compilation process.

Algorithm:
Each IIR filter cell in a SPROCfil design is implemented as a cascade of
biquad cells, plus a bilinear cell for odd order filters. An FIR filter cell ina
SPROCil design is split into blocks, with a default of 30 coefficients, this
is a scheduler parameter.

FIR

The FIR cell provides a single stage finite impulse response (fir) filter output
computation with current input data, finite input data delay line and
predefined filter coefficients.

Transfer function of FIR filter:
H(z) = b0 + b1.zA-1 + b2.2A-2 + ... + bx.z"-x
where x = length-1 and z*-1 represents a unit sample delay.

FWR_NEG

The negative fullwave rectifier provides the function of an ideal fullwave
rectifier with a negative polarity output.

out =- linl|

3-112

FWR_POS

The positive fullwave rectifier provides the function of an ideal fullwave
rectifier with a positive polarity output.

out = lin|

GP_IN

One of the four bidirectional gpio pins is configured as an input. The pin
status is read from the SPROC and written to the output. If the port pinis a
logic zero then the output is set to zero, else the output is set to non-zero.

Technical

“
c
Q
O
o
9]

GP_OUT

One of the four bidirectional gpio pins is configured as an output. If the cell
input is zero then the gpio pin is set to a logic zero, else the gpio pin is set to a
logic one.

HARDLIM

The hard limiter clamps the output to the inclusive range from lower to
upper clamp thresholds. Equal upper and lower clamp thresholds will
force the signal node to the assigned value. The upper threshold must be
greater than or equal to the lower threshold.

Algorithm:
if { lower <= in <= upper}, then out = in
else if { in > upper }, then out = upper
else if { in < lower }, then out = lower

HWR_NEG

The negative halfwave rectifier provides the function of an ideal halfwave
rectifier with a negative polarity output.

Algorithm:
if {out < 0} then out =in,
else out = 0.0.

3-113

—
(o]
(2]
T
2.
0
=3

1onpoid
g uoldag

The positive halfwave rectifier provides the function of an ideal halfwave
rectifier with a positive polarity output.

Algorithm:
if {out > 0} then out = in,
else out = 0.0.

INTERP

This cell interpolates its output. The number of output samples generated
per input is set by the factor parameter. The value of the output sample
equals the value of the input sample from which it was generated.

INTR_LDI
The integrator is a sample value accumulator with a reset input.
Algorithm:
if reset < 0.5
out =in(previous) + out(previous)
orelse
out =0.0
INT_LDI

This integrator is a sample value accumulator.

Algorithm:
out =in(previous) + out(previous)

INT_RECT

This is the rectangular integration approximation of 1/s --> (TzA-1)/(1-z"-1).
[In effect this is just INT_LDI with the scale factor tsamp represented by T].

Algorithm:
out =in(previous)*tsamp + out(previous)

3-114

INT_Z
This integrator is the z-transform of 1/s --> T/(1-z"-1)

Algorithm:
out(present) = in * tsamp + out(previous)

LN
The natural logarithm is calculated using an eight term truncated series:

In(in) = In(1+x) = x - x*2/2 + x*3/3 - x4 /4 + x"5/5 - x"6/6
+x77/7 - x"8/8

In order to increase accuracy at the ends of the range of the input the
following compression approach is applied:

ifin > 1.375,in =in/2 and out = In(in) + In(2);
if 0.1353 <= in < 0.6875, in = 2*in and out = In(in) - In(2);
if 0.6875 <= in <= 1.375, out = In(in);

The percentage accuracy varies, with the highest error of 0.003% in the input
range of 0.32 to < 2.0, and a highest error of 0.9% in the input range below
0.32.

(%]
3
©
o
s
a

Technical
Data

&
c
2
I
@
[}

MINUS
This difference junction provides the difference between two inputs.

Algorithm:
out = pos - neg

MULT
The multiplier performs a multiplication of two inputs.

Algorithm:
out = ina * inb

NOISE

This white noise generator uses simple accumulator overflow nonlinearity
on integer multiply for random number generation. The output is scaledto
+/-1.0.

3-115

—
8
T
2
(]
2

1onpoiyg
1€ UON23g

PLL_SQR

This phase-locked loop contains a first order loop filter and square wave
VCO. The output of the PLL is a +/-1.0 amplitude square wave. The center
parameter determines the output frequency for zero input. The gain
parameter determines the frequency deviation with maximum input. Lag
and lead position the filter pole and zero respectively, and filgain sets the loop
filter gain.

PULSE

This is a rectangular pulse generator. Its duty cycle and levels for mark and
space may be parameterised. Mlevel is the signal level when marking for
mark sample intervals, and slevel is the signal level when spacing for space
sample intervals.

QUAD_OSC

This sinewave oscillator produces two sampled sinewave outputs, 90 degrees

out of phase, at a frequency specified as a fraction of the sample rate, fs. It

calculates each sine of x, using the first 5 terms of the Maclaurin series:
sin(x) = x - x*3/3! + xA5/5! - x\7/7! + x"9/9!

RTS_IN

One of the four rts pins is used as an input (SPROC must be in master mode).
If the rts pin is a logic zero then the cell output is set to zero, else the cell
output is set to non-zero.

RTS_OUT

One of the four rts pins is used as an output (SPROC must be in slave mode).
If the cell input is zero then the rts pin is set to a logic zero, else the rts pin is
set to a logic one.

3-116

SCALER

The SCALER cell, scales the input to yield between 0 to 8 bits shift left or
right, on the output. This is equivalent to a signal level shift in the range
of 48 dB to +48 dB in 6 dB steps. The following formula applies:

out = in * 2Ashift

For values of shift not in the specified range out is forced equal to in.

SER_IN

The serial input reads data from one of the two serial hardware ports (siport0
or siport1) on the SPROC device.

-—
o
2
o
o
o
a

Technical
Data

&
c
o
©
@
0]

SER_OUT

The serial output places data into one of two serial hardware ports (soport0 or
soport1) on the SPROC device.

SINE

Sine is calculated as pi/2 times the input using the first 5 terms of the
Maclaurin series:

sin(x) = x - x*3/3! + xA5/5! - xA7/7! + x"9/9!
where x = in.(pi/2)

SINE_OSC

The sinewave oscillator produces a sampled sinewave output at a frequency
specified as a fraction of the sample rate, fs. It calculates sine of x using the
first 5 terms of the Maclaurin series:

sin(x) = x - x*3/3! + xA5/5! - xA7 /7! + x"9/9!

CSINK
SaiNas

The sink accumulates a series of input samples (size determined by the
length parameter) into a block of data RAM. The block is stored beginning
at symbolic location 'instance_name.outvector'.

3-117

—
1
(2]
T
=.
o
A

1onpoid

:g uonoag

SINKRD

The SINKRD accumulates a series of input samples (size determined by the
length parameter) into a block of data RAM. The block is stored beginning
at symbolic location 'instance_name.outvector'. A reset input is available: if
2=0.5 the cell is held in reset otherwise the cell can capture a series of input
samples. The done output is zero if the cell is reset or capturing input
samples, else the done output is one. Reset is only effective when the sink
block is full.

SOURCE

The source repetitively reads an array of user specified sample values. The
samples must be contained in a file, one sample per line, within the working
directory, before scheduling. Source reads the samples one at a time from an
array in data RAM, and the number of samples is specified by the length
parameter. The array's position in RAM begins at symbolic location
'instance_name.invector'. Values of the sample data must be in the range from
-2.0 to < 2.0 fixed point, but values can also be represented in hexadecimal
and signed integer notation.

STEO_IN

The stereo input reads stereo data from one of the two serial hardware
input ports (siport0 or siport1) on the SPROC device, and provides two
outputs for signal processing.

STEO_OUT

The stereo output sends stereo data, from two signal paths, to one of two
serial hardware output ports (soport0 or soport1) on the SPROC device.

SUM2-SUM10

The summing junctions add multiple inputs. All inputs are functionally
equivalent. Care must be taken to scale inputs before summing, to avoid
overflow, on the output.

3-118

TRANSFNC

The transfer function cell allows the user to directly specify a transfer
function in either s or z domain. Each instance of the cell requires a transfer
function file within the working directory, a .tff file, before scheduling. This
file is identified with the spec parameter (warning: do not use the design
name as the transfer function file name). For sdomain coefficients a bilinear
mapping to z coefficients is performed. Additionally the .tff file may contain
the frequency at which s and z map exactly, the "critical frequency".

UCOMPRES

The U Law compression cell requires a left-justified linear input value. This
value is converted to a left-justified, 8 bit U law encoded value. The 8 bit
output code has the format:

PSSSQQQQ

where
P = sign bit
SSS = 3 bit segment code
QQQQ = 4 bit quantization code.

The linear input value is a fixed point, 14-bit, left-justified, two's complement
representation for integer values (-8159 <= in <= +8159) with the leftmost bit
interpreted as the msb. The rightmost 10 bits are ignored.

UEXPAND

The U Law expansion cell requires a left-justified, 8 bit U law input format.
This code is converted to an integer in the +/- 8031 range as a left justified 14
bit value. The 8 bit input code has the format:

PSSSQQQQ
where
P = sign bit
SSS = 3 bit segment code
QQQQ = 4 bit quantization code.

The output value is a fixed point, 14-bit, left-justified, two's complement
representation for integer values (-8031 <= in <= +8031) with the leftmost bit
interpreted as the msb. The rightmost 10 bits are zero.

3-119

&
c
<
©
@
w

°
p=)
°
Q
a

Technical

Data

VCO_SQR

This voltage controlled oscillator generates a square wave output with a
+/-1.0 volt amplitude. The center parameter determines the output frequency
for zero input.

Algorithm:
output frequency = (center + gain*in) * sample rate

VOLTREF

The voltage reference provides a constant output voltage.

1onpoig
g uonoag

-
@®
2]
=
3
(]
L

OrCAD and VIEW/ogic Graphical Design Interface

OrCAD

When you select SPROCview from the development system main menu, the
development system shell invokes the OrCAD tool, DRAFT. You use the DRAFT
tool to create a signal flow block diagram of your design.

The graphical design interface supports OrCAD software version 4.04.

You can access the DRAFT tool by using the standard methods provided with the
OrCAD. However, if you are capturing a design for use with the development
system, always access the DRAFT tool by invoking it from the development
system main menu.

VIEWIogic

The VIEWIogic option for the SPROCview interface supports entry of schematics
via Workview, a product of VIEWIlogic Systems, Inc.

SPROCIlab development system tools are invoked directly from Workview via
customized menus. The user can create a schematic design for the application
and invoke SPROClab tools to build, load, run, and debug the design using the
customized VIEWIogic menus.

3-120

Filter Design (SPROCil)

If your signal processing design includes one or more filters, you create a data file,
called a filter data file, that defines the detailed specifications and coefficient data
for each filter. A parameter in each filter cell instance entered on the signal flow
block diagram identifies the name of the filter data file to use with that filter.

When you use the SPROCbuild utility to convert the signal flow block diagram
into code and generate a chip configuration file, the utility reads the filter data file
for each filter cell instance and generates the appropriate code to implement the
filter as specified. The generated code uses the coefficients from the filter data file
and a cascade of special filter cells to implement the filter. The special cells are
provided in the SPROCcells function library, but reserved for internal use by
SPROCbuild.

The SPROCil filter design interface helps you create filter data files that specify
the coefficients and processing order to use in implementing a filter design. The
filter design interface provides an interactive design environment that lets you
define your filter using a graphical representation of the filter shape. Other tools
in the filter design interface automatically generate the coefficients corresponding
to the filter design, and write these coefficients to the filter data file.

Filter Types

The filter design interface supports design of the following major categories of
digital filters:

* Infinite Impulse Response (IIR) or recursive filters, and

* Finite Impulse Response (FIR) or nonrecursive filters.
In the IIR category, there are four familiar analog types of filters:

e Butterworth,

o Chebyshev I,

¢ Chebyshev II (or inverse Chebyshev), and

* Elliptic function (for Cauer parameter).

3-121

™
c
o
I
@
3}

Technical

Data

—
(]
(2]
T
3
0
2

1onpoid

1g uondag

In the FIR category, there are two filter types:

* Optimal Chebyshev approximation, commonly referred to as the
Equiripple or Parks-McClellan-Remez (PMR) design, and

¢ Kaiser window design.

You can use these types to design lowpass (LP), highpass (HP), bandpass (BP),
and bandstop (BS) filters.

Transfer Functions
SPROCDbuild can implement user-defined transfer functions of two types:

¢ s-domain transfer functions
e z-domain transfer functions

when generating code and creating a SPROC chip configuration file.

The SPROCcells function library includes a transfer function cell that permits you
to include transfer functions in your signal processing designs. When you place
this cell in a diagram, you specify a parameter that names the file defining the
transfer function.

SPROCbuild uses z-domain transfer functions directly and automatically
converts s-domain transfer functions into z-domain transfer functions. The build
implements the transfer function as a cascade of 1st-order or 2nd-order sections
using the coefficients you define.

Converting Block Diagrams (SPROCbuild)

SPROCDbuild provides a set of software modules that automatically converts your
design into SPROC description language (SDL) code, then uses that code to
generate a configuration file for the SPROC chip and a table of symbolic
references to chip memory locations. To create these files, the utility uses files
produced by the SPROCview graphical design interface, the SPROCcells function
library, and the SPROCil filter design interface in the development system, and
user-defined cells and transfer functions of the proper form created outside the
development system.

3-122

SPROCDbuild includes three modules:

¢ MakeSDL
* Schedule
e MakeLoad

Each module performs a unique function in the process of converting your signal
flow block diagram and associated files into SDL code and then into a SPROC
chip configuration file and a symbol file for your design.

°
o
©
1<}
I
a

Technical

I3}
c
=t
©
o
w

The Conversion Process

The conversion process comprises the sequential execution of all modules of the
SPROCDbuild utility. Each module performs its specific function in the process and
produces an output file (or files) required by the next module. The general process
is as follows:

1. The MakeSDL module integrates the output from the graphical design
interface with data files from the filter design interface and user-defined
transfer functions to produce a partial code package containing SDL code and
data files. The module also generates instances of certain special cells that are
included in the SPROCcells function library but reserved for internal use.

2. The Schedule module takes the partial package produced by MakeSDL and
adds the code blocks for the cells used in the design (from the function library
or user-defined cells) and any additional data files. Then the module
schedules the program according to on-chip resource availability and
produces binary format program and data files for the design. It also produces
a table of symbolic references to chip memory locations.

3. The MakeLoad module takes the assembly language program and data files
produced by Schedule and packages them into a configuration file for down-
loading to the chip.

3-128

(peuyep-iesn)
se|l} 1as
%00iq 8poo ||80

o|}} |]oquis
(Areaqyj uoiouny wouy)
S||89 jeulsul

diyd

00 L-O0HdS 8|} ejep pue

<t) 212 J0Y

se|l}
uoloun; Jejsuel)

peojexe

Jasa%en

ol
uoneinbyuoo

se|l} ejep pue

sejl} epoo
weiboid Areuiq

1as

(weibeip moj} reubis wouy)
(Areaqy) uoiouny wouy) Isiieu
So|l} 1gs %°0iq epod ||8d

Section 3:
Product

Technical
Data

Overview of the Conversion Process

3-124

SPROCIink Microprocessor Interface (SMI)

The SPROClink microprocessor interface (SMI) is a set of components you use in
developing microprocessor applications that include the SPROC chip as a
memory-mapped device. With the components of SMI, you can create
microprocessor applications that separate the logic processing tasks that run best
on a microprocessor from the computation-intensive real-time signal processing
tasks that run best on the SPROC chip. By partitioning the design in this way, you
increase the performance and efficiency of the complete application by increasing
the performance and efficiency of the separate portions of the application.

The SPROC chip communicates with the microprocessor at high speed via the
chip’s parallel port. The SPROC chip appears as a memory mapped device
occupying 16K bytes of microprocessor memory space. Refer to the appropriate
SPROC Programmable Signal Processor Data Sheet for details on memory mapping
the SPROC chip.

SMI supports applications using either Motorola-type (little endian) and
Intel-type (big endian) byte ordering.

SMI Components
SMI includes the following components:

e A symbol translator (SymTran)

The symbol translator uses the symbol file produced in the SPROClab
development system and generates a data structure that mirrors the
symbeol file. This data structure allows for external C references to
SPROC chip memory addresses. The symbol translator also produces
a code file that allows you to locate the variables in the data structure
at the appropriate SPROC chip memory map locations.

e The SPROC C function library (sproclib.c)

The SPROC C function library provides the source code and header
files for basic functions required to access the SPROC chip from a
microprocessor. The library includes the SPROC chip load, reset, and
start functions, and it includes the data conversion functions required
for the microprocessor to correctly access and interpret the 24-bit
fixed-point data type native to the SPROC chip.

3-125

o
c
=
©
@
[%2]

Q
3
©
e}
P
Q.

Technical

—
[s]
2]
¥
3
0
2

19npoid
i€ UoNdag

Relationship to Other Products

SMI is delivered as a part of the SPROClab development system software.
However, the components of SMI are not like other SPROClab software tools; you
do not invoke them from the development system environment. The components
of SMI provide source code and header files, in ANSI C, that you use outside of
the SPROClab development system, in an embedded systems development
environment. By accessing these files using the tools in your embedded systems
development environment, you can create microprocessor applications in C that
include the SPROC chip. Note that such applications require that you build a
hardware memory-mapped system architecture.

The SMI Development Process

The process required to develop a microprocessor application that includes one or
more SPROC chips as memory mapped devices requires work that must be done
in the SPROClab development system, work that must be done in your
embedded systems development environment, and other prerequisites.

In the SPROClab development system, you must:

e Create, debug, and tune the signal processing design using the
SPROCIlab development system tools.

e Run SPROCbuild to produce the block file that the microprocessor
application will use to load the signal processing design onto the
SPROC chip.

In your embedded systems development environment, you must:

¢ Translate the symbol file into the data structure needed to provide
microprocessor access to SPROC chip memory addresses.

e Copy the block file, the data structure, and all relevant file sections
from the SPROC C function library into your applications work area.

* Create the microprocessor application.

In addition, you must also map the SPROC chip(s) into the microprocessor’s
memory.

3-126

Note that aspects of the microprocessor application depend on output from the
signal processing design development process. If you develop the portion of the
microprocessor application that deals with the SPROC chip in parallel with the
signal processing design, be sure that you understand the relationship between
the two processes, and the dependencies described in this manual. Otherwise,
changes made to the signal processing design may affect work done on the
microprocessor application.

Downloading and Debugging (SPROCdrive Interface - SDI)

(8]
2
©
<]
“
a

Technical

&
[~
o
B
Q
w

The SPROCdrive interface (SDI) is the command-driven monitoring interface you
use to load, run, and debug a signal processing design on the SPROC chip. SDI is
part of the SPROClab development system ssoftware that executes on the
development system PC.

The Hardware Link

In order to access the chip, SDI requires a hardware interface between the PC and
the SPROCboard evaluation board where the chip is mounted. The SPROCbox
interface unit provides that hardware link. It provides communications protocol
conversion and relays user commands from SDI in a form that is appropriate for
use by the chip.

The SPROCbox interface unit connects to the PC through a serial I/O port. The
communication rate on this port can be 1200, 2400, 9600, or 19200 baud,
depending on the setting of dip switches in the interface unit. SDI automatically
determines the correct communications rate to match the rate selected by the
interface unit DIP switches. The default setting is for 9600 baud.

The interface unit connects to the chip through the access port on the
SPROCboard evaluation board. Communication over the access port is
high-speed and synchronous.

3-127

Inputs to SDI

To load, run, and debug designs, SDI uses the following inputs:
* Your commands, including arguments, options, and switches
¢ The load file created by the “MakeLoad” utility.

The load file includes the program and data generated from your
signal-flow block diagram. The load file is written in Motorola S-
record format to ensure data integrity.

—f
3
T
2
o
o

1onpoid
1 UoN23S

¢ The symbol file created by SPROCbuild

The symbol file includes the complete symbolic names of each input,
output, and other node represented on your signal-flow diagram, and
it maps these symbols to a specific memory address in the chip’s
memory.

When you issue a command to read or modify the value of a symbol,
SDI accesses the symbol file and converts the symbol name you enter
into the actual on-chip memory address. SDI only supports the use of
symbol names at the user interface. When communicating with the
chip, SDI uses direct memory references.

Outputs from SDI

Because SDI is an interactive monitoring interface, most “outputs” from SDI are
temporary values displayed on the development system PC or written to volatile
chip memory. Changes made using SDI to modify the values of symbols do not
effect the load file or the original signal-flow block diagram. They are only
temporary changes to chip memory values. Whenever the chip is reinitialized, all
memory values revert to the original values in the load file, i.e., those saved on
your signal-flow diagram.

However, SDI can produce two types of output files:
e Alogfile

The log file (sdi_log.cmd) comprises a complete record of all
commands you enter during the SDI session; it is generated
automatically and saved when you exit SDI.

3-128

You can execute the log file under SDI to entirely recreate the
previous session. You can also use the file to help you update your
signal-flow block diagram into a final “debugged” version by using
the file as a reference that lists all the modifications you made to
various design values.

e Acapturefile

A capture file is a data file that stores a series of values for a specified
symbol. You create a capture file by using the capture command and
specifying the symbol name for the address at which to start and the
number of memory locations to display and write to file.

o
=
©
(e}
s
a

Technical
Data

&
c
o
o
Q

2}

You can use the capture file with user-supplied tools to plot the
values you captured and evaluate the performance of your design.

SDI Command List Summary:
SDI includes commands to provide the following functionality:

assemble/disassemble
break point commands
capture

comment

dos

halt/step/go

help

history

load

mode

pause

probe

read

repeat

show

start

test

verify

write

3-129

—
3
=
=
5
-3

1onpoid
g UoNoag

Overview of SDL

SPROC description language (SDL) is the language used to create high-level
descriptions of arbitrarily complex signal processing systems to be implemented
on the SPROC programmable signal processor.

SDL is a block-oriented language that supports hierarchical designs. Blocks may
be of the following types:

e primitive

¢ hierarchical

Primitive Blocks

Primitive blocks, also called asmblocks, contain hardware-specific coding
analogous to the firmware in a microprocessor system. Primitive blocks are
written in assembly language. They may not contain references to other blocks.

Code for signal processing functions is written at the primitive level. These
primitive blocks comprise the SPROCcells function library. They are optimized
for the hardware, and efficiently implemented to extract maximum performance
from the SPROC chip. Other primitive blocks include the “glue” blocks, or
phantoms, required to provide control and synchronization functions for the
multiple general signal processors (GSPs) on the SPROC chip.

Hierarchical Blocks

Hierarchical blocks contain references to other blocks, either primitive or
hierarchical. The sequence (i.e., firing order) and partitioning (i.e., allocation over
the GSPs and insertion of phantom blocks) of the referenced blocks in a
hierarchical block is automatically determined.

A hierarchical block that is not referenced by any other block is a top-level block.
There must be one and only one top-level block in a design.

3-130

Block Structure
Ablock contains a block name, block definition, and block body. The block name
identifies the block for reference by hierarchical blocks. The block definition
contains the following;:

¢ anoptional list of parameters

e aport list declaring the block’s input and output signals

¢ optional general declarations for wires, variables, symbols, aliases,
time zones, compute lines, and ports

o
=
©
o
s
a

Technical

&
c
°
It
@
[0}

e optional verify statements

e optional duration statements (primitive blocks only)

The block body contains references to other blocks (hierarchical blocks only) or
assembly lines (primitive blocks and manual blocks only).

Instruction Format (Program RAM)I

Total Width 24 bits
Opcode 6 bits
Operand 15 bits
Address mode 3 bits, eight modes

Data Format

Total Width 24 bits

Range fractional -2 t0 +1.999999762

Code QQ.22, 2's complement with 22
bit fraction

3-131

SDL files are compiled by the SPROCbuild utility in the SPROClab development
system. The utility includes three modules:

e The MakeSDL module

The MakeSDL module prepares a top-level SDL file that completely
describes the signal processing design using the netlist of the signal
flow block diagram, primitive blocks from the function library, and
other code and data files

—
3
T
=
5
L

19npoiyg
g Uondag

e The Schedule module

The Schedule module takes the top-level SDL file and breaks the file
apart based on the resource and synchronization requirements of the
blocks within the file. Resource requirements include program
memory usage, data memory usage, and GSP cycles. Synchronization
requirements include the determination of how and when blocks
communicate data, and whether a block is asynchronous and
independent of other blocks in the design.

After breaking up the file to accommodate resource and
synchronization requirements, the Schedule module partitions the
file by blocks and locates the blocks to execute on the multiple GSPs
on the SPROC chip using a proprietary partitioning algorithm. The
module inserts phantom blocks as necessary to control the
synchronization of the GSPs as they execute the design.

Then the Schedule module generates a symbol table file that lists the
physical RAM addresses on the SPROC chip for all the parameters,
variables, and other elements in the design.

e The MakeLoad module

The MakeLoad module converts the partitioned SDL file into a binary
configuration file to run on the chip.

3-132

Basic Instruction Set

The following table lists the basic instruction set for the GSPs in the SPROC signal
processor.

Basic GSP instruction Set

OPERAND
OPCODE TYPE DESCRIPTION
g
add source Add without carry. Load operand into ALU and sum with 22 E
contents of accumulator. Result is stored in the U‘u; & E
accumulator
adc source Add with carry.
and source AND contents of accumulator with operand. Result is
stored in accumulator.
asl none Arithmetically shift the accumulator contents 1 bit to the left
and store the result in the accumulator. The most
significant bit (msb) is shifted into the carry bit C and a
zero is shifted in the least significant bit (Isb) of the
accumulator.
asr none Arithmetically shift the accumulator contents 1 bit to the
right and store the result in the accumulator. The Isb is
shifted into the carry bit C, and the msb is held constant,
(sign extended).
cle none Clear carry bit of status register.
cmp source Compare operand with accumulator contents and update
the status register. Accumulator is unmodified by a
compare instruction.
dine source Test loop flag, jump not equal to zero to specified operand
address, then post decrement loop register.
jmp source Unconditional jump to operand address in the program
RAM. Execution continues from the operand address.

3-133

-
®
0
T
3
o
L

1onpoid

g uonoag

Baslic GSP Instruction Set (Continued)

OPCODE

OPERAND
TYPE

DESCRIPTION

jxx

source

Jump on condition code true.

XX CONDITION | TRUE CONDITION
cc Carry Clear ~CF
cs Carry Set CF
If Loop Flag LF
Set
mf Multiplier MF
Overflow
Flag Set
ne ZF Clear ~ZF
ov Overflow OF
si - Sign SF
eq sameas ZE | ZF
ge >= (OF & SF) | (~OF & ~SF)
ze Zero/Equal ZF
le <= (~OF & SF) | (OF & ~SF) | ZF
gt > ~ZF & ((OF & SF) | (~OF & ~SF))
It < (~OF & SF) | (OF & ~SF)
wf 7 Wait Flag WF
Set

3-134

Basic GSP Instruction Set (Continued)

OPERAND

OPCODE TYPE DESCRIPTION

ldr source Load destination register (r) with operand.

idy source Alias for mpy

mac source Load Y register of multiplier with operand value and
execute the multiply/accumulate operation which adds the
multiplication result to the contents of the M register. There
is a two cycle latency before the result is available. The X
register can be loaded with a new value during this two
cycle period.

mpy source Load Y register of multiplier with operand value, and
execute the multiplication operation, placing the result in
the M register. There is a two cycle latency before the
result is available. The X register can be loaded with a new
value during this two cycle period.

nop none No operation.

not none Perform a one’s complement of accumulator. Result is
stored in the accumulator.

ora source OR contents of accumulator with operand. Result is stored
in accumulator.

rol none Rotate accumulator contents left 1 bit through carry.

ror none Rotate accumulator contents right 1 bit through carry.

sec none Set carry bit of status register.

str destination | Store contents of register (r) at destination address.

3-135

&
c
°
o
(%

n

-
Q
=
©
o}
Q

Technical

—
]
(2]
T
2
(e}
2

1onpoid
€ uonoag

Basic GSP Instruction Set (Continued)

OPERAND

OPCODE TYPE DESCRIPTION

sub source Subtract without carry. Load operand into ALU register and
subtract from accumulator. Result is stored in the
accumulator register.

subc source Subtract with carry.

xor source Exclusive OR contents of accumulator with operand.

Result is stored in accumulator.

3-136

SPROCsim - Simulator

SPROCsim ssoftware simulates the physical SPROC chip, facilitating the
development of custom cell libraries. SPROCsim implements a virtual SPROC
using advanced software techniques. The virtual SPROC computes results which
are identical to the physical SPROC, but performs these computations under the
control of a command driven user interface. In contrast with the actual hardware,
SPROCsim provides complete access to all registers, flags, memory, and internal
status information. The virtual SPROC supports single stepping, continuous
execution, and breakpoints.

Breakpoints can be set to occur whenever a particular instruction is executed,
whenever a data location is accessed, whenever a range of data locations are
accessed, or when a register or memory location takes on a particular value.

Command scripting allows the creation of command sequences, much like a batch
file, useful in a particular simulation environment as well as allowing unattended
operation.

Input/output to the virtual SPROC'’s serial ports and parallel port is performed
using files. These files can be created using a text editor and viewed using a
standard plotting package.

Source level debugging provides a correspondence between the SPROC
Description Language (SDL) and the actual memory locations. These allow the
user to refer to variable names with the names present in the actual design instead
of as raw hexadecimal addresses.

All values are displayed in text windows. These text windows allow related
information to be displayed in non-overlapping windows using ASCII characters
for display.

The simulator is available as an optional addition to SPROClab development
system.

3-137

o
c
°
°
o
[0}

o
3
©
o
[
a

Technical

Data

APPLICATION INDEX

Application Notes

Developing a Natural Logarithm Cell ..o 4-1

Part1- Illustrates how a natural logarithm cell was designed and
shows implementation tradeoffs and results.

Part2- Highlights cell programming/coding, conventions and techniques
as applied to an algorithm for the natural logarithm.

SPROC I/O OPEIatioN.......cuccunivieiiinnisessrsersssssssissseses 4-33
Designing High-Performance, Cost-Effective Digital Motion
Controllers with the SPROC-1400..........ccovummiemaininsninsinnssssns st sessnssssessens 445
Implementation of an Adaptive Line Echo Canceller........ocoocvvcciciicsincinnns 4-56
Fractional Sample Rate Conversion Application NOte......cccoevieceeincniccciiineiinennnae 4-67
Application of Linear Phase Filterbanks to Frequency
Shaping Digital Hearing Aidsc.couuueuuiriierniiseisseissescesiesssssenncsnnases 4-76
Spectral Analysis with Applications on the SPROC-1400
Family of Signal ProCeSSOTSccocveinimininiiessnnsessesensinssnssisssisssssssnssse s sassssssens 4-87

Part1- Implementation of DFT algorithm versus that of a

discrete filter bank

Adaptive Closed Loop Velocity Control for the DC MOtOrc..ccovvuunersinicunnnn. 4-107
Abstracts
Hands-Free Telephone CONVENEToiiiininisiensisssninssnimsisissines 4-113
Application of an Adaptive Equalizer Using the
SPROC Development SyStEIM............uereiiereiresissississssssssssesssisesssssessisssssssssmnsissisns 4-115
Spectral Analysis with Applications on the SPROC-1400
Family of Signal PrOCESSOTSccouiuurenemneiscincieiniscsisiinininsnis s 4-117

Part2- Theory of the Goertzel method and other
non-parametric spectral estimation techniques in use today.

w

Section 4
Applications

Developing a Natural Logarithm Cell
Part 1 of 2

by Chester Nowicki

Introduction

A SPROC library cell was required for the natural logarithm function. This
application note, part 1 of a two-part set, illustrates how a natural log cell was
devised and shows implementation tradeoffs and results.

For the fixed point architecture of the SPROC general signal processors (GSPs),
the cell would be constrained to operations in a 24-bit fixed point binary number
system, with 22 bits following the binary point and two’s complement
representation. Computations were performed on a Sun SPARCstation SLC, using
“C” language programs with 32-bit floating point variables. The final algorithm
was run on SPROClab hardware, and the results were captured into a data file in
order to compare actual performance to predicted performance.

Basic Approach

Realizeable input and output ranges impose important constraints upon a natural
logarithm function for the SPROC library. The applicable two’s complement
QQ.22 number system affords a numeric range from +1.999999762 through
-2.000000000. In(1.999999762) establishes the top end of the input range by its
argument, and the top end of the output range by its evaluation:

In(1.999999762) = 0.693147.

This result is shown to six decimal places. Solving the equation In(in) = - 2.0
establishes the bottom end of the input range:

This result is also shown evaluated to six decimal places. Overall, the input range
must therefore be limited to values of in, such that 0.135335 <= in <= 1.999999762.
The span of the input range is less than 2.

4-1

>
o
2
=
=1
=
3
@

:p uonoag

A candidate for a mathematical generating function is the Maclaurin’s series for
In(1+x), which converges for values of x in the interval (-1,+1). The series is
represented as the infinite sum of terms:

In(14x) = x - x*2/2 + x"3/3 - x"4/4 + ... (-x)"k/k +
Relative to input:
in=1+x(@.e,x=in-1).

For the SPROC input range 0.135335 <= in <= 1.999999762, the transformation
conveniently yields a range for x such that -0.8646647 <= x <= 0.999999762, which
is a subset of the interval over which the Maclaurin’s series converges.

Accuracy versus Execution Efficiency

Ideally, the natural logarithm routine should execute in as few cycles as possible
with excellent accuracy. Limiting the implementation to a finite number of terms
trades accuracy of the calculation against execution time. Additionally, for a
polynomial series expression truncated to finite degree, the truncated series can
be optimized by application of a Chebyschev polynomial to achieve an accuracy
with least mean square error over the nominal interval -1 < x < +1.

Programs were written in the “C” language to simulate computational algorithms
with print statements formatted to present results to six decimal digits. Figure 1
shows code for the basic truncated series, for the case of degree 9. Key points of
this algorithm are the nested multiplication and the use of “minus x”, that is:

x=in-1 implies (-x)=1-in
The truncated series can then be written as:
--x)X1 + (-x)1/2 + (-x)(1/3 + (-x)(1/4 + ... + (x)(1/Kk))....)

whereby terms in odd powers of x are positive and terms in even powers of x are
negative. For notational convenience only, “x” is used to represent negative x or
“minus x” in the “C” language programs.

The program in Figure 1 was extended for computations with truncated series of
six through nine terms. The revised program, shown in Figure 2, further
calculates the difference between the truncated series computation and the value

4-2

for the built-in natural logarithm function; ideally, the difference would be zero
for each argument. One line of code does the actual computation for each
truncated series. The results are given in Table 1.

From Table 1, improvements can be seen at the bottom end of the argument range
for an increasing number of terms (higher order) with the truncated polynomials;
however, the top end is somewhat worse for nine terms than for eight terms. In
the middle of the range, accuracy is clearly good to six decimal places. This center
range accuracy corresponds to 20 binary places beyond the binary point for
QQ.22 fixed point binary representation. For adjacent terms k and k+1 in the
Maclaurin’s series, the corresponding coefficients Ck and Ck+1 have this
relationship:

Ck+1 =Ck* k/(k+1)

Because the ratio between the coefficients of these terms approaches unity for
increasing k, contributions of larger valued arguments (magnitude of x nearing
unity) at the ends of the ranges diminish less rapidly than those of smaller
arguments (magnitude of x nearing zero) near the center of the range. For
example, the argument x = 1/10 decreases its contribution by an order of
magnitude for each term of increasing order, whereas the argument x = 3/4
decreases its contribution by a similar factor only after an increase in order by 8.
That is:

Section 4

%]
c
o
=
Q
a
Q
<

x)*(x*)=0.1x forx=1/10
and: (x)*(x*8) = 0.100113x for x = 0.75.

Consequently, improvement in accuracy could be expected to be small for each
term added beyond order 9 in the truncated series. In fact, the reversal in sign of
the coefficient of the ninth order term accounts for the slightly worse accuracy at
the top end of the input range for the ninth order truncated series than for the
eighth order truncated series. At the bottom end of the range, the arguments x
with negative signs actually tend to reduce the error in accuracy. Two other means
for further improvement would be considered next, Chebychev correction
polynomials and range compression.

Chebyshev Improvement

Table 2 lists Chebyshev polynomials, designated Vn(x), for degrees 0 through 10.
Each polynomial can be applied against a truncated series of the given degree to

4-3

p uonoag

>
o
°
=
o
=3
o
3
w

yield a revised truncated polynomial expression that improves overall accuracy
over the interval (-1,+1) in a least mean square error analysis. For degrees 0 and 1
the correction polynomials are trivial.

To create a Chebyshev corrected truncated series of degree n, the Chebyshev
polynomial of degree n+1 is multiplied by a constant, then the result is subtracted
from the truncated series of degree n+1, that is:

fe(x) = f(x) - *Vn+1(x)
where:

fc(x) is the Chebyshev corrected truncated series of degree n
f(x) is the truncated series of degree n+1

c is a constant chosen such that terms of degree n+1 cancel
Vn+1(x) is the Chebyshev polynomial of degree n+1

u
Example Chebyshev Series Correction
For a truncated series of degree 6, V7(x) is applied:

fo(x) = x - x22/2 + x"3/3 -xM/4 + x75/5 - x"6/6 + x"7/7
{-7cx + 56cx3 - 112ex75 + 64¢cxM7]

Because the 7th order terms are to drop out:
xA7/7 -64cx"7 =0
c=1/(7*64)=1/448

Thus by substitution and factoring;:

fe(x) = -(-x)(65/64 + (-x)(1/2 + (-x)(5/24 + (-x)(1/4 + (-xX9/20
+ (=x)(1/6)))))

For a given value of x, the calculation uses “minus x” (i.e., -x) in a nested product.
Using “x” to represent (-x) results in the expression for calc shown in the
program in figure 2.

A review of the results in Table 1 under the headings Cheb7, Cheb8 and Cheb9
reveals that improvement in accuracy occurs at the top and bottom ends of the
input range at the expense of significantly reduced accuracy in the center. Note

4-4

that each Chebk column in the table represents the results of calculations using
the Chebyshev corrected, truncated series of order n, for whichn + 1 = k.
Comparison of the Cheb7, Cheb8 and Cheb9 results to those for truncated series
with seven, eight, and nine terms reveals that each Chebyshev corrected
truncated series yields accuracy at the ends of the input range slightly better than
that for the uncorrected truncated series of the next higher order.

Range Compression

With the accuracy of calculations using truncated series orders of magnitude
better in the center of the input range (approaching 1.0), it was feasible to improve
accuracy towards the ends of the input range by application of the additive
properties of natural logarithms. The relevant properties are as follows:

In(x) =In(2/2*x) =In(2*x*1/2)
In(x) = In(2) + In(x/2) = In(2x) + In(1/2) = In(2x) - In(2)

The strategy required involves doubling low end numbers or halving high end
numbers, followed by the natural log computation upon the resulting number
and the addition of a natural log correction.

n
-
T 0o
c =
o o
= 9
o =
< a
0w @
<

Reinspection of the results in Table 1 yields the observations that top end accuracy
decreases markedly for arguments above 1.35, and bottom end accuracy
decreases marked below 0.7. Half of 1.35 is almost 0.7; equivalently, twice 0.7 is
almost 1.35. These two numbers will be the range break points.

The program in Figure 3 was devised to evaluate the effects of compressing the
end range input values and adding a correction for each of the previously
illustrated truncated series computation schemes. After some adjustments in the
choices of low_number and high_number, the results in Table 3 were produced.

Table 3 shows dramatically improved accuracy for natural logarithms computed
at the top end, as well as towards the bottom end, of the input range. Even though
improved results also occur for the Chebyshev-corrected truncated series, overall
best performance is evident in the column for the eight term (8th order) truncated
series. Table 4 expresses the error results of Table 3 as percentage error by
dividing each error in Table 3 by the corresponding actual natural logarithm, and
multiplying by 100.

>
]
o
=
2
<)
3
v

‘b uonoag

Cell Algorithm and Code

The decisions established above generally define requirements upon the
algorithm for the natural logarithm cell. Part 2 of this two-part application note
series spells out the algorithm, relates general information relevant to producing
in-line and subroutine forms of code, goes line-by-line through the in-line code,
and highlights the differences between the in-line code and the subroutine code.
The name of the final cell is In.sdl [the sdl extension refers to SPROC Description

Language].

SPROC Cell Performance

With the In.sdl cell installed in a SPROClab environment, a source file was
presented to the cell for both in-line and subroutine instantiations, and the output
captured to a file. The arguments in the source file were essentially the same as
those used in Table 1, Table 3 and Table 4, but reflect the effects of binary
approximation to decimal numbers arising from use of 24 bit fixed point numbers.
These arguments and the captured results were used to determine the accuracy of
the cell achieved in SPROC hardware, relative to the Sun SPARCstation SLC
“built-in” natural logarithm function. Table 5 gives the arguments, SPROC
calculated natural logarithm, the error (SPROC natural logarithm calculation -
Sun natural logarithm calculation) and the error expressed as a percentage.
Comparison of the entries in the Error column of Table 5 with those in the eight
terms column of Table 3 shows almost identical results. Comparison of the
calculated percentage errors in Table 5 to those in the eight terms column of Table
4 also shows pretty close agreement in results.

Raw error in the range from 0.35 through 1.999999762 was less than 0.000007.
Overall, percentage error in the natural logarithm cell calculations was under 0.03
in the argument range from 0.25 through 1.999999762. For argument 0.15, the
percentage error was 0.65. These results agreed extremely well with the computed
results from simulations with the Sun SPARCstation SLC.

Summary

The need for a natural logarithm function for the SPROC cell library led to the
work illustrated in Part 1 and Part 2 of this two-part application note set. In this
first part of the set a basic approach and steps in defining an algorithm for the
function were given. Programs in the ‘C’ language for assessing accuracy of
truncated series, with or without Chebyshev correction and with or without a
range compression technique, were recounted and the results presented. In the
second part of the set, the resulting algorithm was described, and its translation
into code discussed in line by line detail. Information on how to write a SPROC
cell was related for both in-line and subroutine code forms.

Error achieved by the implemented cell over the range from 0.35 through
1.999999762 was within 0.000007 units, as a difference between the SPROC
calculated natural log and the “built-in” function for a Sun SPARCstation SLC.
This agreed almost identically with computations run solely on the SPARCstation.

»
=
T o
c =
o
= O
0 =
% a
(4]

<

Table 1. Error for Truncated Series Calculations

_arg__ 6terms___7 terms___8 terms___ 9 terms Cheb?7 Cheb8 Cheb9

2.00 -0.076481 0.066377 -0.058623 -0.169734 0.064144 -0.057647 0.052054
1.95 -0.054673 0.045089 -0.037838 -0.111552 0.046444 -0.038644 0.032606
1.90 -0.038354 0.029974 -0.023835 -0.071664 0.032206 -0.024707 0.019476
1.85 -0.026346 0.019451 -0.014611 -0.044887 0.021096 -0.014875 0.011004
1.80 -0.017675 0.012285 -0.008687 -0.027328 0.012745 -0.008275 0.005844
1.75 -0.011545 0.007525 -0.004989 -0.016113 0.006766 -0.004133 0.002930
1.70 -0.007314 0.004451 -0.002755 -0.009161 0.002766 -0.001782 0.001450
1.65 -0.004474 0.002529 -0.001454 -0.004995 0.000361 -0.000661 0.000810
1.60 -0.002628 0.001371 -0.000728 -0.002594 -0.000813 -0.000316 0.000597
1.55 -0.001471 0.000704 -0.000343 -0.001273 -0.001092 -0.000395 0.000544
1.50 -0.000778 0.000338 -0.000150 -0.000584 -0.000778 -0.000638 0.000501
145 -0.000384 0.000150 -0.000060 -0.000247 -0.000130 -0.000870 0.000403
- 1.40 -0.000174 0.000061 -0.000021 -0.000094 0.000636 -0.000987 0.000239
1.35 -0.000070 0.000021 -0.000007 -0.000032 0.001352 -0.000945 0.000035
1.30 -0.000025 0.000006 -0.000002 -0.000009 0.001895 -0.000746 -0.000168
1.25 -0.000007 0.000002 -0.000000 -0.000002 0.002190 -0.000426 -0.000331
1.20 -0.000002 0.000000 -0.000000 -0.000000 0.002203 -0.000039 -0.000421
1.15 -0.000000 0.000000 0.000000 -0.000000 0.001941 0.000350 -0.000424
1.10 -0.000000 -0.000000 -0.000000 -0.000000 0.001440 0.000679 -0.000340
1.05 -0.000000 -0.000000 -0.000000 -0.000000 0.000766 0.000899 -0.000189
1.00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000977 -0.000000
0.95 0.000000 0.000000 0.000000 0.000000 -0.000766 0.000899 0.000189
0.90 0.000000 -0.000000 -0.000000 -0.000000 -0.001440 0.000679 0.000340
0.85 0.000000 0.000000 0.000000 -0.000000 -0.001941 0.000350 0.000424
0.80 0.000002 0.000000 0.000000 -0.000000 -0.002203 -0.000039 0.000421
0.75 0.000011 0.000002 0.000001 -0.000001 -0.002186 -0.000425 0.000331
0.70 0.000042 0.000011 0.000003 -0.000004 -0.001878 -0.000741 0.000170
0.65 0.000133 0.000041 0.000013 -0.000012 -0.001290 -0.000925 -0.000029
0.60 0.000362 0.000128 0.000046 -0.000027 -0.000448 -0.000920 -0.000215
0.55 0.000886 0.000352 0.000142 -0.000045 0.000632 -0.000668 -0.000321
0.50 0.002001 0.000885 0.000397 -0.000037 0.002001 -0.000091 -0.000254
0.45 0.004244 0.002069 0.001022 0.000092 0.003865 0.000970 0.000136

040 0.008563 0.004564 0.002464 0.000598 0.006748 0.002876 0.001139
0.35 0.016628 0.009625 0.005642 0.002101 0.011793 0.006435 0.003378

LSt 10 V20040 VANRITIVLY VAR L VAL AV Vevaad IO LVRAVAV 0 o 1020 (VR ViV Ve

030 0.031392 0.019627 0.012421 0.006016 0.021312 0.013395 0.008216
0.25 0.058193 0.039124 0.026610 0.015487 0.039883 0.027467 0.018691
0.20 0.107143 0.077184 0.056213 0.037572 0.076724 0.056625 0.041683
0.15 0.199059 0.153262 0.119201 0.088925 0.151617 0.118937 0.093587

'p UOI3S

>
]
T
=
=4
s
3
»

4-8

=

Table 2. Chebyshev Polynomials

Vn(x)

= O ONNONUE WN=O

(=)

1

X

2x"2 -1

4x/3 - 3x

8xM - 8x"2 + 1

16xA5 - 20x”3 + 5x

32x76 - 48xM4 + 18x72 - 1

64xA7 - 112xA5 + 56x3 - 7x

128x/8 - 256x6 + 160x74 - 32x72 + 1
256x19 - 576xA7 + 432x75 - 120xA3 + 9x
512x710 - 1280x8 + 1120x76 - 400x"4 + 50x"2 - 1

w
L2
T o
c =
o @
23
3
n
g

Table 3. Error for Truncated Series Calculations with Compression

_arg__6terms___7terms__ 8 terms___9 terms Cheb? Cheb8 Cheb9

2.00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000977 0.000000
1.95 0.000000 0.000000 0.000000 0.000000 -0.000389 0.000957 0.000097
1.90 0.000000 0.000000 0.000000 0.000000 -0.000766 0.000899 0.000189
1.85 -0.000000 -0.000000 -0.000000 -0.000000 -0.001120 0.000806 0.000271
1.80 -0.000000 -0.000000 -0.000000 -0.000000 -0.001440 0.000679 0.000340
1.75 0.000000 0.000000 0.000000 0.000000 -0.001717 0.000525 0.000392
1.70 0.000000 0.000000 -0.000000 -0.000000 -0.001941 0.000350 0.000424
1.65 0.000001 0.000000 -0.000000 -0.000000 -0.002105 0.000159 0.000434
1.60 0.000002 0.000000 0.000000 -0.000000 -0.002203 -0.000039 0.000421
1.55 0.000005 0.000001 0.000000 -0.000001 -0.002231 -0.000236 0.000387
1.50 0.000011 0.000002 0.000001 -0.000001 -0.002186 -0.000425 0.000331
145 0.000022 0.000005 0.000001 -0.000002 -0.002068 -0.000596 0.000258
140 0.000042 0.000011 0.000003 -0.000004 -0.001878 -0.000741 0.000170
1.35 -0.000070 0.000021 -0.000007 -0.000032 0.001352 -0.000945 0.000035
1.30 -0.000025 0.000006 -0.000002 -0.000009 0.001895 -0.000746 -0.000168
1.25 -0.000007 0.000002 -0.000000 -0.000002 0.002190 -0.000426 -0.000331
1.20 -0.000002 0.000000 -0.000000 -0.000000 0.002203 -0.000039 -0.000421
1.15 -0.000000 0.000000 0.000000 -0.000000 0.001941 0.000350 -0.000424
1.10 -0.000000 -0.000000 -0.000000 -0.000000 0.001440 0.000679 -0.000340
1.05 -0.000000 -0.000000 -0.000000 -0.000000 0.000766 0.000899 -0.000189
1.00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000977 -0.000000
0.95 0.000000 0.000000 0.000000 0.000000 -0.000766 0.000899 0.000189
0.90 0.000000 -0.000000 -0.000000 -0.000000 -0.001440 0.000679 0.000340
0.85 0.000000 0.000000 0.000000 -0.000000 -0.001941 0.000350 0.000424
0.80 0.000002 0.000000 0.000000 -0.000000 -0.002203. -0.000039 0.000421
0.75 0.000011 0.000002 0.000001 -0.000001 -0.002186 -0.000425 0.000331
0.70 0.000042 0.000011 0.000003 -0.000004 -0.001878 -0.000741 0.000170
0.65 -0.000025 0.000006 -0.000002 -0.000009 0.001895 -0.000746 -0.000168
0.60 -0.000002 0.000000 -0.000000 -0.000000 0.002203 -0.000039 -0.000421
0.55 0.000000 0.000000 0.000000 0.000000 0.001440 0.000679 -0.000340
0.50 -0.000000 -0.000000 -0.000000 -0.000000 0.000000 0.000977 -0.000000
0.45 -0.000000 -0.000000 -0.000000 -0.000000 -0.001440 0.000679 0.000340
0.40 0.000002 0.000000 0.000000 -0.000000 -0.002203 -0.000039 0.000421
0.35 0.000042 0.000011 0.000003 -0.000004 -0.001878 - 0.000741 0.000170
0.30 0.000362 0.000128 0.000046 -0.000027 -0.000448 -0.000920 -0.000215
0.25 0.002001 0.000885 0.000397 -0.000037 0.002001 -0.000091 -0.000254
0.20 0.008562 0.004563 0.002464 0.000598 0.006748 0.002876 0.001139
0.15 0.031392 0.019627 0.012421 0.006016 0.021312 0.013395 0.008216

1p uonoag

>

°

h=4
=
=%
H
3
4

4-10

Table 4. Percentage Error for Truncated Series Calculations with
Compression

_arg__6terms__ 7 terms___8 terms___9 terms Cheb? Cheb8 Cheb9

2.00 0.000000 0.000000 0.000000 0.000000 0.000000 0.140888 0.000000
1.95 0.000001 0.000001 0.000001 0.000001 -0.058199 0.143315 0.014502
1.90 0.000002 0.000002 0.000002 0.000002 -0.119294 0.140128 0.029426
1.85 -0.000003 -0.000003 -0.000003 -0.000003 -0.182018 0.130962 0.044120
1.80 -0.000001 -0.000003 -0.000004 -0.000004 -0.244987 0.115589 0.057907
1.75 0.000017 0.000004 0.000003 0.000002 -0.306732 0.093904 0.070079
1.70 0.000049 0.000003 -0.000003 -0.000008 -0.365717 0.065904 0.079896
1.65 0.000165 0.000021 -0.000001 -0.000020 -0.420280 0.031751 0.086660
1.60 0.000471 0.000082 0.000014 -0.000047 -0.468674 -0.008308 0.089669
1.55 0.001183 0.000232 0.000045 -0.000122 -0.509012 -0.053949 0.088228
1.50 0.002757 0.000606 0.000136 -0.000282 -0.539155 -0.104765 0.081674
1.45 0.006033 0.001461 0.000360 -0.000618 -0.556577 -0.160350 0.069314
1.40 0.012619 0.003334 0.000897 -0.001270 -0.558007 -0.220328 0.050403
1.35 -0.023473 0.007155 -0.002225 -0.010562 0.450500 -0.314867 0.011754
1.30 -0.009438 0.002470 -0.000656 -0.003434 0.722366 -0.284369 -0.064144
1.25 -0.003210 0.000697 -0.000158 -0.000917 0.981473 -0.190772 -0.148315
1.20 -0.000852 0.000151 -0.000025 -0.000181 1.208547 -0.021483 -0.231144
1.15 -0.000149 0.000025 0.000003 -0.000018 1.388538 0.250225 -0.303346
1.10 -0.000018 -0.000003 -0.000004 -0.000005 1.510837 0.712856 -0.357144
1.05 -0.000003 -0.000003 -0.000003 -0.000003 1.569376 1.843384 -0.387090
1.00 n/a n/a n/a n/a n/a n/a n/a
0.95 -0.000002 -0.000002 -0.000002 -0.000002 1.492794 -1.753507 -0.368200
0.90 -0.000012 0.000001 0.000002 0.000004 1.366726 -0.644879 -0.323072
0.85 -0.000170 -0.000020 -0.000001 0.000017 1.194069 -0.215196 -0.260874
0.80 -0.000992 -0.000173 -0.000030 0.000098 0.987165 0.017498 -0.188870
0.75 -0.003889 -0.000858 -0.000195 0.000394 0.759898 0.147654 -0.115117
0.70 -0.011901 -0.003141 -0.000842 0.001202 0.526408 0.207852 -0.047545
0.65 0.005750 -0.001503 0.000401 0.002094 -0.439948 0.173197 0.039068
0.60 0.000303 -0.000055 0.000008 0.000063 -0.431353 0.007668 0.082498
0.55 -0.000001 -0.000003 -0.000003 -0.000003 -0.240873 -0.113651 0.056935
0.50 0.000000 0.000000 0.000000 0.000000 -0.000004 -0.140889 0.000001
0.45 0.000001 0.000003 0.000003 0.000004 0.180336 -0.085086 -0.042625
0.40 -0.000245 -0.000045 -0.000010 0.000021 0.240399 0.004257 -0.045999
0.35 -0.004041 -0.001065 -0.000284 0.000410 0.178849 0.070619 -0.016152
0.30 -0.030036 -0.010596 -0.003792 0.002256 0.037243 0.076403 0.017839
0.25 -0.144364 -0.063858 -0.028636 0.002671 -0.144364 0.006587 0.018326
0.20 0532017 -0.283544 -0.153095 -0.037142 -0.419249 -0.178699 -0.070791
0.15 -1.654706 -1.034568 -0.654735 -0.317106 -1.123383 -0.706047 -0.433052

1l
A =
T 0o
c =
o 3
= 9
O -
% &
%]
<

4-11

>
o
T
=
2
=
3
o

p uonoag

Argument
1.999999762
1.849999905
1.799999952
1.750000000
1.699999809
1.649999857
1.599999905
1.549999952
1.500000000
1.449999809
1.399999857
1.349999905
1.299999952
1.250000000
1.199999809
1.149999857
1.099999905
1.049999952
1.000000000
0.949999809
0.899999857
0.849999905
0.799999952
0.750000000
0.699999809
0.649999857
0.599999905
0.549999952
0.500000000
0.449999809
0.399999857
0.349999905
0.299999952
0.250000000
0.199999809
0.149999857

Table 5. SPROC Results

Natural Log
0.693146706
0.615185499
0.587786436
0.559615612
0.530627966
0.500775099
0.470003605
0.438254833
0.405465603
0.371564627
0.336474895
0.300097942
0.262362719
0.223143339
0.182321548
0.139761925
0.095310211
0.048790216
0.000000000
-0.051293373
-0.105360508
-0.162518978
-0.223143339
-0.287681341
-0.356672049
-0.430784464
-0.510825396
-0.597836733
-0.693146944
-0.798507690
-0.916290522
-1.049818993
-1.203926802
-1.385896921
-1.606974125
-1.884698868

Error
-0.000000
-0.000000
-0.000000
-0.000000
-0.000000
-0.000000

0.000000
-0.000000
0.000000
0.000001
0.000003
-0.000007
-0.000002
-0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000001
0.000003
-0.000001
0.000000
0.000000
0.000000
0.000000
0.000001
0.000003
0.000046
0.000397
0.002465
0.012422

% Error
-0.000051
-0.000014
-0.000034
-0.000031
-0.000033
-0.000020
0.000007
-0.000015
0.000122
0.000323
0.000821
-0.002192
-0.000575
-0.000095
0.000083
0.000076
0.000124
0.000200
n/a
-0.000238
-0.000158
-0.000039
-0.000122
-0.000254
-0.000888
0.000308
-0.000076
-0.000059
-0.000034
-0.000054
-0.000062
-0.000324
-0.003834
-0.028669
-0.153143
-0.654785

Figure 1 - C Program for Truncated Series Natural Logarithm Calculation

#include <stdio.h>
#include <math.h>
main()

(

int constant, count;
float in, out, x, calc;

/* This program calculates natural logs of values piped from a source file. A
truncated series is used.

*/
for (count = 0; count < 31; count++)

{

scanf(“%f”, &in) /* get input argument */

x=1-in; /* transform in to “minus x” */

calc = (-x)*(1.0 + x*(1.0/2.0 + x*(1.0/3.0 + x*(1.0/4.0 + x*(1.0/5.0 + x*(1.0/
6.0 + x*(1.0/7.0 + x*(1.0/8.0) + x*(1.0/9.00))))));

out = log(in); /* use built-in function for comparison */

printf(“%2.9f % 2.9f\n”, calc, out);

%)
c
e}
o
Q
Q

<

}
Figure 2 - C Program for Accuracy of Natural Logarithm Series Calculations

#include <stdio.h>
#include <math.h>
main()

(

int count;
float in, out, x, calc6, calc7, calc8, calc9, calc0, calca, calcb;

/* This program is used to produce a set of results representing the differences
between natural log calculations and the built-in natural log function.

Truncated series and Cbebyshev corrected truncated series are used.

4-13

>
el
°
2
[V
=
[]
3
2]

‘p uonoasg

*/

printf(“_arg 6 terms__ 7 terms__ 8terms__ 9

terms____Cheb? Cheb8 Cheb9\n\n"); /* headings */

in = 2.05; /* initial value */

for (count = 0; count < 38; count++)

{
in=in-0.05; /* argument calculation */
out = log(in); /* built-in function evaluation */
x=1.0-in; /* “minus x” */

calcé = (-x)*(1.0 + x*(1.0/2.0 + x*(1.0/3.0 + x*(1.0/4.0 + x*(1.0/5.0 + x*(1.0/
6.0)))))-out;

calc7 = (-x)*(1.0 + x*(1.0/2.0 + x*(1.0/3.0 + x*(1.0/4.0 + x*(1.0/5.0 + x*(1.0/6.0
+x*(1.0/7.0))N)-out;

cale8 = (-x)*(1.0 + x*(1.0/2.0 + x*(1.0/3.0 + x*(1.0/4.0 + x*(1.0/5.0 + x*(1.0/6.0
+ x*(1.0/7.0 + x*(1.0/8.0)))))-out;

calc9 = (-x)*(1.0 + x*(1.0/2.0 + x*(1.0/3.0 + x*(1.0/4.0 + x*(1.0/5.0 + x*(1.0/6.0
+x*(1.0/7.0 + x*(1.0/8.0) + x*(1.0/9.0)))))))-out;

calc0 = (-x)*(65.0/64.0 + x*(1.0/2.0 + x*(5.0/24.0 + x*(1.0/4.0 + x*(9.0/20.0 +
x*(1.0/6.0))))-out;

calca = (-x)*(1.0 + x*(17.0/32.0 + x*(1.0/3.0 + x*(3.0/32.0 + x*(1.0/5.0 + x*(5.0/
12.0 + x*(1.0/7.0)))) + 1.0/1024.0 - out;

calcb = (-x)*(255.0/256.0 + x*(1.0/2.0 + x*(37.0/96.0 + x*(1.0/4.0 + x*(1.0/80.0
+x*(1.0/6.0 + x*(11.0/28.0 + x*(1.0/8.0))N)) - out;

printf(”%5.2f%10.6f%10.6f%10.6f%10.6f%10.6f%10.6f%10.6f\n”, in, calcé,
calc7,calc8, calc9, calc0, calca, calcb);

}

4-14

Figure 3 - C Program for Accuracy of Natural Logarithm Series Calculations
that Incorporate a Compression Technique

#include <stdio.h>
#include <math.h>
main()

(

int count;
float in, out, x, calc6, calc7, calc8, calc9, calc0, calca, calcb;
float correction, low_number, high_number, In_two;

/* This program is used to produce a set of results representing the differences
between natural log calculations and the built-in natural log function.

Truncated series and Chebyshev corrected truncated series are used. Argu-
ments for in are looped to range from 2.0 through 0.15 The input range is
compressed at top and bottom to improve accuracy. */

printf(“_arg___ 6terms___ 7 terms___ 8 terms___ 9
terms Cheb?7 Cheb8 Cheb9\n\n");

In_two = log(2.0);
low_number = 0.6875;
high_number = 1.375;
in=2.05

(V2]
CC
T 0O
c =
o =
= 9
o =
o
N a
<

for (count = 0; count < 38; count++)

(

in = in - 0.05; /* initial value */
out = log(in); /* built-in function evaluation */
x=1.0-in; /* “minus x” */

correction = 0.0; /* middle range, uncompressed */

if (in < low_number)
{
x = 1.0 -in*2.0; /* compress low end towards center */
correction = -In_two; /* log(arg) = log(2*arg) - log(2)
*/
}
else if (in >= high_number)

{

4-15

-p uondag

>
hel
T
=
Y]
=
[]
3
7]

x=10-in/2.0; /* compress high end towards center */
correction = In_two; /*log(arg) = log(arg/2) + log(2) */

calcé = (-x)*(1.0 + x*(1.0/2.0 + x*(1.0/3.0 + x*(1.0/4.0 + x*(1.0/5.0 + x*(1.0/
6.0)))))-out + correction;

calc7 = (-x)*(1.0 + x*(1.0/2.0 + x*(1.0/3.0 + x*(1.0/4.0 + x*(1.0/5.0 + x*(1.0/6.0
+ x*(1.0/7.0))))))-out + correction;

calc8 = (-x)*(1.0 + x*(1.0/2.0 + x*(1.0/3.0 + x*(1.0/4.0 + x*(1.0/5.0 + x*(1.0/6.0
+x*(1.0/7.0 + x*(1.0/8.0)))))))-out + correction;

calc9 = (-x)*(1.0 + x*(1.0/2.0 + x*(1.0/3.0 + x*(1.0/4.0 + x*(1.0/5.0
+x*(1.0/6.0 + x*(1.0/7.0 + x*(1.0/8.0) + x*(1.0/9.0))))-out + correction;

calc0 = (-x)*(65.0/64.0 + x*(1.0/2.0 + x*(5.0/24.0 + x*(1.0/4.0 + x*(9.0/20.0 +
x*(1.0/6.0))))))-out + correction;

calca = (-x)*(1.0 + x*(17.0/32.0 + x*(1.0/3.0 + x*(3.0/32.0 + x*(1.0/5.0 + x*(5.0/
12.0 + x*(1.0/7.00)))) + 1.0/1024.0 - out + correction;

calcb = (-x)*(255.0/256.0 + x*(1.0/2.0 + x*(37.0/96.0 + x*(1.0/4.0 + x*(1.0/80.0
+ x*(1.0/6.0 + x*(11.0/28.0 + x*(1.0/8.0)))))))) - out + correction;

printf(“%5.2f%10.6f%10.6f%10.6%10.6f%10.6f %10.6f%10.6f \n”, in, calcé,
calc?, calc8, calc9, calc0, calca, calcb);

}

4-16

Developing a Natural Logarithm Cell

PART 2 of 2
by Chester Nowicki

Introduction

This is part 2 of a two-part application note set concerning development of a
natural logarithm cell. Part 2 highlights cell programming/coding conventions
and techniques as applied to an algorithm for the natural logarithm.
Considerations relevant to a subroutine version of this cell are also discussed.

Cell Algorithm

The decisions established in Part 1 of this application note set generally define
requirements upon the algorithm for the natural logarithm cell. Specifically, the
requirements are:

8th order, eight term truncated Maclaurin’s series
input range bottom limiting

top end input range compression

bottom end input range compression

correction for compression action.

ARl o

In terms of cell operation, data flow conventions, SPROC general signal processor
(GSP) architecture, the GSP instruction set, and constraints in the use of on-chip
program and data random access memory (RAM) come into play. Input
arguments and output arguments are presented as data stored in memory
locations that correspond to wires in a schematic diagram. Refer to the
SPROCcells Function Library Reference Manual for the icon of the natural logarithm
cell, denoted In.

By convention, the cell will be labeled In.sdl, where sdl stands for “SPROC
Description Language.” The input wire, pin number 2, and the output wire, pin
number 1, correspond to the input/output (I/0) argument list for the cell, which
will be denoted “in” and “out”, respectively. No parameters appear with the cell,
because none are required for this function. With these points clear, the algorithm
outline follows:

4-17

[%]
<5
c =
Qo I
=9
gz
o) <&@
<

Read “in” (cell input wire)
Initialize correction to zero
If in < bottom, then in = bottom
If in <= low_number,
then

in =in*2

correction = -In(2)
else if in >= high number,
then

=in/2

correction = In(2)
Save correction till end
Take two’s complement of in
Add 1.0 // result s -x
Multiply 1/8 times (-x)
Add 1/7 to product
Multiply result by (-x) Add 1/6 to product
Multiply result by (-x)
Add 1/5 to product
Multiply result by (-x)
Add 1/4 to product
Multiply result by (-x)
Add 1/3 to product
Multiply result by (-x)
Add 1/2 to product
Multiply result by (-x)
Add 1.0 to product
Multiply result by (-x)
Subtract final product from correction
Write result to “out” (cell output wire)

p uoN0ag

o
]
°

=

2

s

3

w

A number of practical considerations apply to this, as well as to any algorithm, to
be coded. They are briefly described in the following few paragraphs.

CONSTANTS: All in-line constants are limited to 15 bits, which may end up either
right justified or left justified in the target data bit field (usually 24 bits). Constants

are incornorated into program instructions as immediate operands, nlavpd within

[ET vl puiace vt 1S Q0 ANNNNTRIAN VPR alitio, ettt

a designated source blt field. All program instructions occupy one locatlon in
program RAM. For example, 1/4 = 0.25 is represented in a 15 bit field as
000100000000000; when left-justified in a target 24-bit field, the result is

4-18

000100000000000000000000, corresponding to 00.0100000000000000000000 and
equating exactly to 0.25.

VARIABLES: A variable occupies one location in 24 bit data RAM. As wires,
inputs and outputs are presented as variables to provide the full 24-bit dynamic
range of the QQ.22 fixed point binary number system. When “constants” are
needed with more than 15 bits of precision, variables must be used. For example,
1/5=0.2 is represented as 00.0011001100110011001100, which equates to
0.1999999809, decimal. If 0.2 is loaded as a constant left justified in a 24-bit field,
the result is 00.00110011001100000000, which equates to 0.1999951172. Therefore,
to achieve best accuracy, constants such as the coefficients 1/3,1/5and 1/7
should be set up as cell variables.

SYMBOLS: An in-line constant may be equated to a symbol. This improves
readability of the code, but it must be remembered that constants are loaded as
immediate arguments (either left or right justified), with only 15 bits of
representation. By contrast, variables are treated as direct arguments for access to
their contents; if the name of a variable is submitted in an immediate argument,
the address of that variable is accessed. Symbols can also be used to initialize
variables (24 bits).

TWO'S COMPLEMENT NOTATION: Negative values are represented in two’s
complement notation. This means that loading of the negation of a variable must
be done either through a subtraction, or via a one’s complement followed by an
integer addition of 1. With symbolic constants, the two’s complement can be
indicated by preceding the symbol with a minus sign, in which case the scheduler
does the computation as a step in the generation of machine code.

OPERAND TYPES: Ordinarily, concern about operand types is unnecessary;
however, the cell programmer must explicitly select the appropriate multiplier
output register segment to correspond with the intended operand types. For fixed
point operands, the MH register must be designated, because it provides an offset
to adjust for the implied final position of the binary point in the product. For
strictly integer operands, the MHI or MLI register must be designated. For mixed
type multiplications the MHI or MLI register should be designated, but the
programmer must understand how the product is formed. For example, consider
the multiplication of 0.125 by 6. The product of this multiplication remains within
the 24-bit representational field (no overflow), and can therefore be interpreted as
a fixed point result read out of the MLI register.

4-19

>
el
S
=
[V}
=
o
3
1723

-p uonodag

CONSTANT EXPRESSION EVALUATIONS: Consider a value for a coefficient,
such as 1/7. How does the cell programmer conveniently represent such a value?
Realizing that a fixed point computation is implied, he could carry out the
division and use the fixed point decimal representation of the result.
Alternatively, the scheduler will evaluate constant expressions, but operand type
must be explicitly indicated and the result of each evaluation must lie in the
interval [-2.0,+2.0]. Symbolic constants also may be used as arguments in
expressions.

In view of the points just made, the following allocations were initially decided
for application to the natural logarithm cell algorithm:

Variables

inv3 =1.0/3

inv5 =1.0/5

inv6 =1.0/6

inv7 =1.0/7

In_two = 0.6931471814
min_two = -0.6931471814

Symbolic constants

inv2=0.5=1.0/2
invd =0.25=1.0/4
inv8 =0.125 = 1.0/8
low_number = 0.6875
high_number = 1.375
bottom = 0.135375977

It should be noted that each of the symbolic constants, including bottom, need no
more than 15 bits for accurate representation. The value for bottom, however, is a
compromise to eliminate a variable. Although the natural logarithm of bottom is
-1.999699357, the error in the natural logarithm calculation at the very bottom of
the input range is greater than the difference achieved in representing bottom in
24 bits as a variable (the value would then be 0.135335207).

4-20

General Comments

A few general comments about writing cells are appropriate, prior to description
of the actual code for the natural logarithm cell.

The listing for In.sdl shows the structure and organization applied by STAR
Semiconductor for cell source code. For convenience only, the listing does not
show the CVS header with comments related to version control. The first section
provides cell name, and brief descriptions of the cell’s function, arguments,
parameters and algorithm. The second section accommodates the in-line code
version of the cell. When a subroutine form is applicable, a third section provides
the subroutine call, and a final section accommodates the body of the subroutine.
These last three sections occur in forms generally called “blocks” and specifically
declared asmblock, callblock and subrblock, respectively, in the three instances
illustrated in the cell listing.

The block declaration consists of one logical line that includes the cell name, a
parameter list, and an argument list. The parameter list, contained in braces,
establishes initialization values (for other than inputs and outputs) that the
scheduler assigns when it produces machine code. The argument list, contained
in parentheses, lists all variables used for cell input and output wires. In both
cases, list entries are separated by commas; however, a semicolon is used to
separate the argument list into an input list and an output list, in that order.

[
. C
< o
c =
o 2
= 9
0 =
58
[%p]
<

After the block declaration comes symbol definitions and variable definitions
with initial variable assignments. [Note: Although in general the parameter list
may be used to define initial values that can be applied to variables, none are
needed for the natural logarithm cell. The parameters present values that the
scheduler will assign if the schematic containing the cell does not contain explicit
alternatives. For cells that include subroutine versions, the statement
“%subr=default” is a mandatory component in the asmblock and subrblock
parameter lists. Refer to the SPROClab User’s Guide for further information
regarding parameters.] Other statements may appear among or following these
definitions; these are described in the SPROC Description Language Reference
Manual. Comments demarcated by two methods may be incorporated. One
method is the “C” language scheme of /* comment */. The other method is a
double slash, (i.e., / /) with the actual comment following it within the same line.

Star’s conventions include a “Registers used” comment, to list specialized usage
of any GSP registers in the cell implementation. Finally, a duration statement is

4-21

>
k]
°
=
2
&
3
w

'p uoNd3g

required prior to the code itself. The duration statement gives the worst case
number of instructions executed in any one pass through the cell, from its
beginning to its end. By convention, the duration statement provides, as a
comment, the total lines of code (instructions) in the subject block of the cell.
[Note: In the cases of callblocks and subrblocks, register usage for both the
callblock and subrblock are provided only in the callblock. Also, the duration
statement for the subrblock always contains an argument of 0, whereas the
duration statement for the callblock should contain the combined actual duration
for the callblock and subrblock. Again by convention, the duration statement in
the callblock includes total lines of code as a comment.]

Actual code instructions appear at the end of the block, and are contained
between a “begin” statement and an “end” statement. Each line may include
comments. Also, blank lines are permitted. Mnemonics for instructions are lower
case, while register names in operands are upper case.

Cell Code: In-line

Examination of the In.sdl cell listing reveals one major difference from what was
presented in an earlier section. The algorithm for calculation of the truncated
series is nested only for the last 7 terms. The reason for this difference will become
clear in the discussion of details about the cell’s in-line code.

The parameter list in the asmblock declaration contains no parameters, except
“%subr=default,” which is required for the scheduler to establish that a
subroutine form might exist for use as an alternative to the in-line code. The
argument list in the asmblock declaration shows one input and one output,
respectively designated “in” and “out”. Variables and symbols following the
declaration meet criteria previously described.

The register usage comment cites specific usage of the X register. This is explained
in subsequent detail. Lastly, before the code itself, the duration statement shows a
duration of 47 instruction cycles, and 52 lines of code.

Following the begin statement, the first instruction reads the input argument
presented to the cell. The second instruction sets the X register to a zero value
initial correction, as noted in the register usage comment. This value of correction
will apply if the value of “in” lies within the range not subject to compression.

4-22

The third instruction tests the A register for bottom of the range compliance
against an immediate argument, and results in a jump to label “inrange” if the
result is true. Failure of the test results in loading the A register with bottom as a
replacement for the out of range input value, followed by a jump to label “low”.
This accomplishes the bottom range limiting function given in the algorithm. To
save a cycle, the jump skips the next two instructions, which are not necessary
with the input known to be less than the test case for that pair.

Like an “if-then” construct, the aforementioned compare instruction tests the
contents of the A register against low_number to establish whether to compress
the value towards the center of the range. The arithmetic shift left is equivalent to
a multiply of the contents of A by 2, and minus In(2) then replaces the correction
held in the X register. The subsequent jmp instruction to label “not_high” avoids
the next test and jump in order to save a cycle, when A is known to contain a
number less than high_number.

The instruction comparing the contents of A to high_number and the following
jump less than is an “else-if” construct, that establishes whether to compress a
high end value towards the center of the range. Failure of the test is followed by
an arithmetic shift right; this is equivalent to division of the contents of the A
register by 2. In(2) then replaces the correction held in the X register.

v
oc
T 5
c =
o M
= ©

O —=
¢ a
n a
<

All of the above if-then, else-if decisions converge at the instruction following the
label “not_high” so that the value of correction in register X gets stored to the
variable named “correction.” This frees the X register for its next use, cited in the
register usage comment. To get minus in, the next two instructions effects a two’s
complement as a one’s complement upon the contents of the A register followed
by addition of an integer 1 [not 1.0]. Adding 1.0 to the result yields 1.0 - in, which
is the needed “(-x)” [not to be confused with register X].

Atlabel t8, “(-x)” is loaded into register X one time, for use in all subsequent
multiplies. The first multiplication times inv8 forms the core of the 8th order term.
In current hardware, the mpy instruction takes 3 cycles to execute. This means a
latency of 2 additional instruction cycles precedes the presentation of the product
in the multiplier output register. In general, the X register may be reloaded during
the latency period; if no other useful instruction can be executed during the
latency period, then one or more nop instructions must be inserted. [Note: It is
possible to read the previous contents of the product register during the latency
period; however, some caution is suggested for this practice, in case a single cycle
multiply instruction is offered in future products]. At label t7, the core of the 7th

4-23

>
T
°
=
2
=
5
o

b uonoasg

order term, inv7, is placed in the A register, and a nop instruction follows. The
fixed-point product, now available from the MH register, is added to the contents
of the A register, which then are multiplied times the contents of the X register.

Atlabel t6, inv3 is loaded into the A register; an arithmetic shift right divides it by
2 to yield the value of invé. This procedure eliminates the need for a separate
variable for the invé coefficient. The addition of the now available product to the
contents of the A register prepares the way for the next nested multiplication
operation. The contents of A are again multiplied by the contents of X.

Except for operand in the lda instruction, the nested multiplication procedure
repeats identically from labels t5 to t1. At t1, the procedure is modified in a way to
save a cycle that otherwise would be lost. If the nested product scheme were to
end by finally adding 1.0 to the next to the last product, the following instruction
sequence would be required:

tl: 1da1.0
nop
addMH // 1.0+ (-x)(1/2 + (...
mpy A // (-x)(1.0 + (-x)(1/2 + (...
nop
lda correction // correction in A
sub MH // correction - (-x}1.0 + (-x)(1/2 + (...

In this sequence of seven instructions, the result is equivalent to that achieved in
the six instructions before the last, as given in the In.sdl listing for the in-line code.

The final instruction stores the result, contained in the A register, to the variable
corresponding to the cell output wire. The end statement closes the in-line code
segment.

Cell Code: Subroutine

For almost all intents and purposes, the implementation of the natural logarithm
algorithm in the subroutine form of the cell is identical to that described in the cell
code discussion for the in-line cell. Therefore this section deals with general
features unique to subroutine forms of cells, and with specific features relevant
only to the differences between the in line and subroutine versions of the In.sdl
cell. These differences are best reviewed while examining the In.sdl cell listing.

4-24

As for the asmblock segment for the in-line form, the parameter list in the
callblock declaration contains only “%subr=default.” This is required for the
scheduler to verify that a subroutine form exists for use as an alternative to the
in-line code. The argument list in the callblock declaration similarly shows one
input and one output, respectively designated “in” and “out”. Of the two
variables that follow, only “correction” serves a purpose identical to that for the
in-line version. It should be understood that it is strictly necessary to have among
the callblock variables those unique to the call; this is to guarantee re-entrant code
function for the subrblock.

The variable “return” is specifically for establishing the return address for the
subroutine; its contents are equated in the callblock code to the address of the
location just beyond the jump instruction, which invokes the actual subroutine
code. By convention, the return variable is presented first in the list of variables,
such that its address is the lowest in the block of variables set up for the callblock
by the scheduler program.

The callblock code section is prefixed with a begin statement, and ends with an
end statement, as it does for the asmblock as well as the subrblock. In general, the
callblock code serves two purposes: (1) to support exchange of arguments (cell
input and output) and (2) to set up management hooks for the subroutine. The
first instruction and the last instruction, 1da in and sta out, clearly address the first
purpose. These two instructions are identical to the first and last instructions in
the asmblock of the in-line form. The second and third instructions address the
second purpose. As indicated in the register usage comment, the B register is
designated for the base address of variables in the callblock. In this case, the
address of the block is that of the variable “return,” and is denoted by the
expression “#return.” With this address in the B register, subroutine code can
access callblock variables through indirection. The jump instruction always has as
its argument the form “cellname.$start”, where the double quotes must be
included in the operand. For In.sdl, cellname is In.

2]
.2
T o
c =
o ©
= ©
g a
o @
<

Inspection of the subrblock in the In.sdl listing reveals that the subrblock
declaration contains only the name of the cell, and no parameters or arguments.
The variable and symbol list consists of the remaining variables and symbols in
the in-line form that were not declared in the callblock; these meet criteria
previously mentioned to support the algorithm. For those variables that were
declared in the callblock, namely “return” and “correction,” symbols alone are
defined as shown in the listing, and for convenience, are repeated here:

symbol return=0, correction=1;

4-25

>
5]
°
=
2
=
3
(%]

‘b uonoag

With the base address of the two callblock variables contained in the B register,
the sum of the contents of B and the value of one of these designated symbols
yields the address of the corresponding variable in the callblock. Thus, the
variable can be accessed using indexed instructions for B register plus offset. In
the code segment of the subrblock, three instructions of this type can be found,
they are:

stx [B+correction]
Ida [B+correction]
jmp [B+return]

The first two instructions ensure that the correction is unique to the instantiation
of the callblock that invoked the subroutine. The third instruction similarly
guarantees return to the address, symbolically designated “postamble”, for that
same callblock instantiation.

In terms of lines of code, the callblock adds two instructions and the subrblock
adds one instruction as overhead for the call, the return, and the use of callblock
variables by the subrblock code. Looking at the duration statement in the
callblock, one sees “4+46”. The 4 comes from the callblock and the 46 from the
subrblock, yielding a total of 50 instruction cycles. Compared to the duration of 47
for the asmblock, the duration of the subroutine version reflects the addition of
the three overhead instructions.

Summary

Based upon results of work recounted in Part 1 of this application note set, an
algorithm was presented for a natural logarithm cell. General considerations for
cell programming were related, and specific requirements for the natural
logarithm cell were addressed. Actual code generated as an implementation of the
algorithm was reviewed line by line for the in-line code form. A small
modification to the algorithm for code and cycle time reduction was explained.
Finally, differences applicable to the subroutine code form were presented.

4-26

Listing 1 - In.sdl Code

/i*i*it*t*********l*t**ki************t**t*****iiti*********

1n.sdl

P 2222 22 R 22 R 2222222222222 RSS2 22 Rz i sl
Function:

This code calculates the natural logarithm of the input using these
first 8 terms of a series:

In(in) = 1ln(l+x) =
X - x~2/2 + x~3/3 - x~4/4 + x~5/5 - x~6/6 + x~7/7 - x~8/8
Arguments:

fixed in 0.135375977 <= in < 2.0 // input value

fixed out -2.0 <= out <= 0.693115235 // resulting calculation L@
T
c 2
Parameters: o3
o=
5 a
none » 8
Algorithm:

The calculation range is restricted by hard limiting to a lowest value
of 0.135375977, and reduced for greater accuracy at the ends by a
divide by two at the top end, or a multiply by two at the bottom end. A
correction is added to the natural log calculation.

If in > 1.375, in = in/2 and correction = 1n(2); if 0.135375977 <= in <
0.6875, in = 2*in and correction = -1n(2); if 0.6875 <= in <= 1.375,
correction = 0.0.

The algorithmic calculation of 1ln is a nested product of sums:
In(l+x) =

—(-X) - (=X)(-X) (1/2 + (-x) (1/3 + (-x) (1/4 + (-x)(1/5 + (-x)(1/6 +
(=x)(1/7 + (-x)/8))))))

Since in = 1 + x, x = in - 1 and -x = -(in - 1) = -in + 1.

4-27

1) Variables are used to guarantee 24 bit representation and precision
for those constants 1/n that are not represented in 13 binary places.

2) The calculation is carried out for 0.13535375977 <= in < 2.0,
sinceln(0.135375977) = -2,0; for in< 0.135375977, in 1s forced to
0.135375977.

*/

/*******************/
/* inline code */
/*******************/

asmblock 1ln { %$subr=default } (in; out)

variable fixed 1ln_two = 0.693147181;
variable fixed mln_two = -0.6931471814;
symbol low_number = 0.6875;

symbol high_number = 1.375;

symbol bottom = 0.135375977;

‘p uonodag

>
°©
°
5
2
s
3
@

variable fixed correction;

symbol inv8=0.125; // 1.0/8
variable fixed inv? = 1.0/7;
variable fixed inv5 = 0.2; // 1.0/5
symbol inv4 = 0.25; // 1.0/4
variable fixed inv3 = 1.0/3;
symbol inv2 = 0.5; // 1.0/2

/* Registers used:

fixed X initially holds correction; then holds (-x)
*/

duration 47; // total lines of code: 52
begin

lda in

1dx #0 // initial correction

cmp #bottom // antiln(-2.0) threshold at

bottom of range
jge inrange lda #bottom // use antiln(-2.0) for below

range values

4-28

jmp
//
inrange:
cmp
gt
low: asl
1ldx
Jmp
not_low:
cmp
jlt
asr
1dx
not_high:
stx
not
add
add
t8: 1dx
mpy
t7: lda
nop
add
mpy
t6: lda
asr
add
mpy
t5: lda
nop
add

mpy
t4: lda

nop
add

mpy
t3: 1lda
nop
add
mpy

low
#low_number
not_low

mln_two
not_high

#high_number
not_high

1n_two
correction
#1
#1.0

A
#invs8
inv?
MH

A

inv3
MH

inv5

MH

#inv4

MH

inv3

MH

//

//
//
//

//
1/

//
//
//
//
//
/!
//

/!
//

//

//

//

//

skip next test to save a cycle

multiply by two
correction is 1n(1/2) = -1n(2)
skip next test to save a cycle

divide by two
correction is 1n(2)

store final correction

two’s complement

-in + 1.0 = =(in - 1.0) = -x

-x into X S

(-x) (1/8) s
I
Q
&

1/7 + (-x)(1/8)

1/3 in A
1/3 divided by 2 = 1/6
1/6 + (-x)(1/7 + (-x)(1/8))

1/5 + (-x)(1/6 + (-x)(1/7 + (-x)
(1/8)))

1/4 + (-x)(1/5 + (=xX)(1/6 + (-x)
(1/7 +
(-x) (1/8))))

1/3 + (-x)(1/4 + ...

4-29

b UoND3Sg

>
o
2
5
Y
=
[}
3
14

t2: lda #inv2

nop
add MH /7 172 + (-x)(1/3 + ...
mpy A
tl: lda correction // correction into A
sub X // correction - (-x) in A
mpy MH /7 (=x) (-x) (1/2 + (...
nop
nop
sub MH // correction - (-x) = (-x)(-x)(1/2
+
// (oo + (-X)(1/8)))))) in A
sta out
//
end

/*****tt************/

/* subroutine call */
/*******************/

callblock 1n { %subr=default } (in; out)

variable hex return=postamble;
variable fixed correction;

/* Registers used:

hex B base address of variables in callblock
fixed X initially holds correction; then holds (-x)
*/
duration 4+46; // total lines of code: 4 + 51
begin
lda in
1db #return // provide for passing return_spot
jmp “1ln.$start”
postamble:
sta out
end

4-30

/********t***tittt*i/

/* subroutine body */

/****************i**/

subrblock 1n {} ()

symbol return=0, correction=1;

variable fixed ln_two = 0.693147181;
variable fixed mln_two = -0.6931471814;
symbol low_number = 0.6875;

symbol high _number = 1.375;

symbol bottom = 0.135375977;

symbol inv8 = 0.125; // 1.0/8
variable fixed inv7 = 1.0/7;

variable fixed inv5 = 0.2; // 1.0/5
symbol inv4 = 0.25; // 1.0/4

variable fixed inv3 = 1.0/3;
symbol inv2 = 0.5; // 1.0/2

5
duration 0; é
&

begin @

1dx #0 // initial correction

cmp #bottom // antiln(-2.0) threshold at bottom

of range
jge inrange
lda #bottom // use antiln(-2.0) for below-range
values

jmp low // skip next test to save a cycle
//
inrange:

cmp #low_number

jgt not_low
low: asl // multiply by two

1ldx mln_two // correction is 1ln(1/2) = -1n(2)

jmp not_high // skip next test to save a cycle
not_low:

cmp #high_number

jlt not_high

asr // divide by two

ldx 1n_two // correction is 1n(2)
not_high:

stx[B+correction] // store final correction

4-31

not

add #1 // two's complement
add #1.0 // =in + 1.0 = =(in - 1.0) = -x
t8: 1ldx A // =-x into X
mpy #inv8 // (-x) (1/8)
t7: lda inv7
nop
add MH // 1/7 + (-x)(1/8)
mpy A
t6: lda inv3 // 1/3 in A
asr // 1/3 divided by 2 = 1/6
add MH // 1/6 + (=x)(1/7 + (-x)(1/8))
mpy A
t5: 1lda inv5
nop
add MH // 1/5 + (=xX)(1/6 + (=x)(1/7 + (-x)
(1/8)))
mpy A
lda #inv4
5w nop
X add MH /7174 + (=x) (1/5 + (%) (1/6 + (-x)
28 (1/7 +
S= /7 (-x)(1/8))))
¢ mpy A
lda inv3
nop
add MH // 1/3 + (-x)(1/4 +
mpy A
t2: lda #inv2
nop
add MH // 1/2 + (-x)(1/3 +
mpy A
tl: lda [B+correction) // correction into A
sub X // correction - (-x) in A
mpy MH // (=x) (=x) (1/2 + (...
nop
nop
sub MH // correction - (=Xx) = (-x)(-x)(1/2 +
// (... + (-x)(1/8)))))) in A
jmp [B+return])
//
end

4-32

SPROC I/0 Operation
by Frank Sgammato

This paper will describe the SPROC, the available options and selections for a
variety of applications. It will discuss configuration registers, modes, and 1I/0O.

SPROC Modes of Operation

The SPROC can be configured into one of two operating modes, master or slave,
by controlling the input pin [MASTER]. If slave mode is to be used, three
additional input pins must be driven - - MODE[2:0]. These pins control the width
of the parallel port (in slave mode) and may be changed dynamically in
operation. The section on memory models provides further details.

Slave Master 3
VDD 6 g
M14 M14
MASTER | MASTER
L14 L14
RESET RESET
SPROC SPROC

In master mode, the SPROC is the "ACTIVE" device. Initialization is achieved by
the SPROC automatically, as described in the section on boot. In slave mode,
power-on initialization is achieved with the aid of a controlling microprocessor
(MPU/MCU). The parallel port of the SPROC is the likely path to interface on

4-33

>

T

A
=
=3
=
3
"

‘p uo123g

MPU/MCU with the SPROC memory. The MPU/MCU interface is discussed in
further detail in the parallel port section. The access port (serial interface) may
also be used, as described in more detail in the access port section. The code and
data blocks are loaded to the internal caches of the SPROC. In slave mode,
referred to as the coprocessor mode, the SPROC is "PASSIVE" on the bus.

Boot (Master Mode)

Internally to the SPROC reside two programs, "Self-Boot" and "Break". Self-boot
is only used by master SPROCs. The second section may be used anytime during
operation regardless of mode (refer to the "Break" section).

Self-boot is a program which permanently resides in the SPROC ROM. It will be
executed only upon reset and only in master mode. Immediately after reset, the
code bus for the GSPs is disconnected from the normal code RAM (000h to 3FFh)
and connected to the internal ROM bus. The assembly code contained in the boot
section instructs one GSP to perform all the data movement. In the case where
slave SPROCs are connected to the master, that same GSP will also load their
memory spaces.

Note: Since the GSP does not depend upon the code RAM for its instructions, it may
copy data to that area along with data RAM.

Boot loading is performed in blocks with bus width = 8 bits (though all words are
24 bit), MSB first, and wait states = 7. The protocol is block size first, block
destination followed by data. Blocks are read from an external memory device
(accessed with CS high) and copied to SPROC addresses with CS low until a block
size of zero is encountered. The last instruction of boot commences operation.

Break (Master or Slave)

Break is a program which permanently resides in SPROC ROM, and can be
executed at any time by issuing a halt command. This forces the GSPs to
disconnect from the code RAM and reconnect to the ROM (similar to boot) and
start executing instructions at the beginning of the break section. The code in the

Ult:ali bCLllUll ulm(b uie UDrb 0 LUpy llltfil" K’Uglbttrb anu wau lllt?lf rcslmcla lU

predetermined locations in data RAM.

4-34

This mechanism may be automatically used by the SPROClab development
system under SPROCdrive and can be used for debugging. This feature may be
enabled or disabled. If enabled, 15 data locations are reserved for each GSP. With
the feature disabled, the user regains the use of the those locations (for the final
design).

An example of a SPROCdrive command sequence is as follows:

halt <CR>
read A G3 F7 <CR>

The contents of the GSP#3 accumulator will be displayed on the development
system’s screen in fixed point format with seven decimal places.

halt <CR>
read *G* h <CR>

This will display the register contents for all GSPs in hexadecimal format.

»
g
T o
c =
o 0
= 9
88
w

[S¢

Memory Models of the SPROC (Slave Mode)

In slave mode the bus width and byte order are determined with the MODE[2:0]
pins. When 24-bit bus is selected, the transfer requires only one write (or read)
and no extra address lines are needed. If a 16-bit bus is used, the transfer requires
two writes (or reads) and one additional address bit (EADDR1) is required. When
8-bit mode is used, transfers require three writes (or reads) and two additional
address bits (EADDR1, EADDRO) are required.

4-35

313 4S71 31y 4571 114 9871 31y gSIN

PO Nq-pT PO 11q-9] PO 11q-8 PO\ N1q-8
aN ozm
[olss3yaav3 N lolss3yaava N lolss3yaav3 i ouaava [olss3uaava ['W 08aava
[1)ss3yaav3 iR [1}ss3uaav3a ZIN 'B0av3 (t}ss3vaav3 ZIN 1aava [t)ss3yaav3 ZIN 15aav3

D0HA4S 20HA4S OZWN. D0HAdS DZMV 20HdS OJW
(01300 575 (UEle el] Pryn [o]3a0W &7 3 [01300N [=5
(+}300W OTN (1]300W oI (1]acon O (11300 o
elaaon iy [el300N [lel3aon oo [el3con TN

QaaA aaa QaA

Section 4:
Applications

4-36

For the various modes, the following is a representation of SPROC parallel port
transfers for standard external bus widths of 8 bits, 16 bits and 32 bits.

EADDR | EADDR
0 0
SPROC Port Pins D23-D16 | D15-D8 | D7-DO
32 bit Bus Pins: D31-D24 | D23-D16 | D15-D8
24 bit Mode MSB MID LSB 0 0
16 bit Bus Pins: D15 DO
16 bit Mode,LSB First MSB MID 1 X
16 bit Mode,LSB First LSB 0's 0 X 0
16 bit Mode,MSB First LSB 0's 1 X <2
16 bit Mode,MSB First MSB MID 0 X 5 —gé
s
8 bit Bus Pins:
8 bit Mode,LSB First . 0's 0 0
8 bit Mode,LSB First LSB 0 1
8 bit Mode,LSB First MID 1 0
8 bit Mode,LSB First MSB 1 1
8 bit Mode,MSB First MSB 0 0
8 bit Mode,MSB First MID 0 1
8 bit Mode,MSB First LSB 1 0
8 bit Mode,MSB First * 0's 1 1

Key: MSB - Most Significant Byte
MID - Middle Byte
LSB - Least Significant Byte
X - Don't Care
*Note: This condition wastes a bus transfer cycle and is not necessary.

4-37

>
]
°
=
2
&
3
»

't UoND3g

Parallel Port (Slave Mode)

The SPROC parallel port is a flexible and efficient interface for system designers.
The main section of the parallel port is 14 address and 24 data lines, READ,
WRITE, and Chip Select. Interfacing with a SPROC is as simple as interfacing a
microprocessor with a static RAM. The SPROC will be a memory-mapped
peripheral on the microprocessor's bus.

Timing of data transfers will vary according to the bus width. If a bus width of 24
bits is chosen, the data transfer requires only one write (or read). Refer to the
section on "Memory Models". If the selected bus width requires multiple writes
to the SPROC, the port circuitry reformats the data into 24-bit words. Likewise
when the microprocessor requests data, the parallel port hardware separates the
24-bit word into the required widths.

Watch Dog Timer (Slave Mode)

A watch dog timer (WDT) is provided as a safety feature of the parallel port
interface circuitry. To enable the WDT a bit must be set by writing to location
4FFh bit 16. This can be performed by the microprocessor or the SPROC.

With "8-bit width" and "MSB first" selected, a complete word transfer over the
parallel port will take three writes (or reads). If the last byte, the LSB is not
written or read within 160 master clock cycles (indicating an incomplete
transfer), the WDT will initiate a soft reset of the parallel port interface circuitry. A
similar situation is true for 16-bit mode.

Note: If in "MSB first" mode, the microprocessor reads only the LSB (last byte), the
time-out will not occur.

Soft Reset of Parallel Port (Slave Mode)

A soft reset of the parallel port occurs for a variety of reasons. One was discussed
above, another is when external circuitry causes both read and write pins to be
low. A soft reset clears the flags (RTS, RD, WR, BUSY).

4-38

Parallel Port (Master Mode)

In master mode, the bus width can be configured for 8, 16, or 24 bits with 18
address lines (four more than in slave mode). The bus width can dynamically
change in the application by software. The parallel port may also interface with
devices of varying speeds requiring different timing for each. This is
accomplished with the control register located at 4FFh.

Special Note: In master mode the SPROC powers on in 8 bit mode and can be
reconfigured at any time thereafter.

GPIO (Master or Slave)

The GPIO pins are bidirectional lines which may be used in either master or
slave modes. The direction and level may be changed at any time by software,
and monitored as well. The register for setting the direction and level is located at
4FEh. The register for reading pin levels is 4FCh.

.
5
C =
o =
= Q
2 3
wn

154

C7 . Gpia) GP[3]}CL

C8. gP[2) GP[2]| C8

B8l aPp1) GP[1] B&

A8 | GP(o] GP[o] A8
Input Output

4-39

>
o
°
=
e
E
3
w

It uonoag

RTS (Master or Slave)

The RTS (request to send) pins are unidirectional lines. The direction is mode
dependent. In master mode the RTS pins are input only, and output for slave
mode.

A5 | RTS[3] RTS[3) |.AS_
C6 | RTS[2) RTS[2] [C6
B6 | RTS[1] RTS[1] |B6
A8 | RTS[0] RTS[0] [A6
Input Output
(Master) (Slave)

In master mode the RTS lines can only be tested at location 4FCh. In slave mode
the RTS lines can be set or cleared at 4FEh. This pin can be used for master/slave

signalling.

Serial Inputs (Master or Slave)

Two serial input ports support a four wire interface and are extremely versatile,
eliminating the need for external hardware. The lines are clock, data, strobe and
sync. Each port can work independently of each other. The data flow manager
works in conjunction with the input ports to interface with the central memory
unit.

Clock lines can be passive or active. Passive indicates the clocks must be supplied
by an external device and active means the SPROC supplies the clocks. An
internal rate may be selected by writing to 410h or 411h. The value written to
these locations will allow an internal counter to divide the rate of the main
oscillator. Clock waveform may be continuous or gated (burst mode) and may be
inverted.

4-40

Data streams may vary in length. The allowable lengths are 8, 12, 16, and 24 bits.
The sequence is selectable for msb or Isb first. The received msb may be inverted
to convert offset binary representation to two’s complement.

;‘ﬁ SRXCLK[0] SGiJ_; SRXCLK[1]

SRXD[0] G12 gpy

J14 | SRXSTROBI0) G13| SRX[S)‘[I]F]iOB[ﬂ

K13/ snepuLSI[0) Ki4| sonpuLsii]
SERINO SERIN1

Strobe lines are used to indicate the data is valid. The types of strobes are long,
short, inverted, format 2, and format 3.

Sync lines are used by the data flow manager to direct incoming packets to the
proper locations within the input FIFO. These lines are used by the data flow
manager to align the samples in the FIFO buffers.

[
2
T 0o
c =
o
- O
QO =
o Q
» Q
<

The setup for the serial input operation may be written to locations 443h and 44Bh
for input ports siport0 and siport1. This is also referred to as the port
configuration.

Data Flow Manager - Input (Master or Slave)

The Data Flow Manager (DFM) is responsible for much of the data movement
within the SPROC. This relieves the GSPs from having to perform this function.
The DFM must be notified of all data structures, timing and synchronizing
requirements of all the GSPs. The DFM may be reset (405h) without the need for
the port to be reconfigured. In the case of the serial input ports, the DFM must
know the following;:

Locations
FIFO Starting ADDR 442h and 44Ah
Buffer Length (samples per packet) 440h and 448h
Index Length (buffers in FIFO) 441h and 449h

4-41

Some examples of FIFO structures:
Input Port siport0; 1 sample per packet, 2 buffers in FIFO

Buffer Length 1 UFFER
Index Length 2 B 0
FIFO Start ADDR assigned by the scheduler

FIFO size 2 BUFFER1

Trigger Location 800h (Port 0)

Input Port siport1; Stereo, 2 buffers in FIFO BUFFERO
Buffer Length 2
Index Length 2
Z o FIFO Start ADDR assigned by the scheduler BUFFER1
° Q3 FIFO size 4
B Trigger Location 801h (Port 1)
= 3
S &

BUFFERO BUFFERI1

Input Port siport1; Stereo, 2 buffers in FIFO

Buffer Length 24

Index Length 2

FIFO Start ADDR assigned by the scheduler
FIFO size 48

Trigger Location 801h (Port 1)

4-42

Serial Out (Master or Slave)

Two serial output ports support a four-wire interface and have the same flexibility
as the serial input ports. The configuration registers are located at 453h and 45Bh.
In addition, an 8-bit decimation register will allow a resampling at a slower rate.
The decimation registers are located at 454h and 45Ch.

STXCLK([0] _::3113 STXCLK[1] fﬁz
STXD[o] | B14 STXD{1]
STXSTROB|[0]-C13 STXSTROB{1}-A14
SNCPULSO[o}-E14 sncpuLsol1}£12

SEROUTO SEROUT1

Data Flow Manager - Output (Master or Slave)

The DFM is responsible for the output data movement. The FIFO structures are
much simpler than those of the input. The DFM must know:

»
c
7T o
c =
o =
= O
o =
o Q

N
<

Location(s)
FIFO Length 451h and 459h
FIFO Start ADDR 452h and 45Ah
DFM Reset 405h
DFM Restart 455h and 45Dh

The output DFM is also responsible for monitoring the trigger bus. A register for
each output port is available. The locations for these mask registers are 456h and
45Eh.

Access Port Usage (Master or Slave)

The access port is a full duplex, serial interface of synchronous receive and
transmit pairs. It has the capability of non-intrusively monitoring and changing

the SPROC's code, data and control space. This may also be used in the target

system. This port provides added adaptability and control of the SPROC without
disturbing the operation. Some precautions must be taken to insure proper
operation.

4-43

>

T

2
=
2
e
3
[

:p UoN23Sg

B10 | ACLOCK

A10 | ARXD ATXSTR |__A9

£9 | ARXSTR ATXD |—B9
Access Port

In master mode, the SPROC on power-on reset will load its code and data
through the parallel port. The access port may be written or read any time after
initialization has taken place. In slave mode, the SPROC must be initialized by an
external device. This can be accomplished through the host interface (parallel
port) or the access port (serial).

Access port receive data are of two types: read commands and write commands.
Input transfers are valid only while the receive strobe is enabled. For the SPROC
1400-5, a read command consists of an extended address field only, whereas a
write command consists of an extended address field followed by a data field.
The extended address field has length 16 bits with msb equal to a “1” for a read
command, and “0” for a write command. Three bits following the msb are
reserved. The next 12 bits specify the SPROC’s internal address for the read or
write for only the write command, a final 24 bits (msb first) specifies the data to
write to the selected SPROC’s address. Note: the three reserved bits must be
zero.

In response to a read command only, the SPROC sends a 24-bit data word over the
transmit line of the access port while the transmit strobe is enabled. This will be
the word read from the location specified in the read command, and is presented
msb first. '

The access command 09425A5A5Ah will write the value of 5A5A5Ah to location
942h. The access command 8BEFh will cause the access port to transmit the
contents of 0BEFh. The access port can read or write data once every 70 master
clocks with parallel port usage, and once every 35 clocks with no parallel port
usage.

4-44

Designing High Performance, Cost Effective Digital
Motion Controllers with the SPROC-1400

by Kirk Brisacher

Introduction

Mechanical motion is part of everyone’s life. The demanding applications of motion
control in consumer, automotive, industrial, instrumentation, and computer
peripheral products continue to grow. There exists a need for highly flexible, accurate
and cost effective motion control systems development. The growing computational
power of digital microprocessor technology and the decreased cost of mechanical
shaft and linear encoders has brought a tremendous increase in the application of DC
motors servo systems to modern motion control systems.

Digital control loops are by far more adaptive and natural in the environment of
today’s complex digital based products, in comparison to the analog control loops of
yesteryears. Software programmable digital filtering offers a more flexible product
design cycle, as well as effective dynamic compensation for complex motion control.

Digital filters eliminate many of the manufacturing problems associated with
component tolerance and drift that have plagued analog compensation techniques.
They have the added benefit of increasing the level of integration in silicon and
reducing the component count on the printed circuit board which decreases the
system size and increases reliability. These are important product design issues in an
industry like computer peripherals, where a short design cycle and high production
yield is of paramount importance.

The objective of this application is to demonstrate a design and development
philosophy and technique using the SPROC-1400 and SPROClab that will allow a
system designer to quickly design, develop, and test cost effective, compact, reliable,
single or tightly coupled multi-axis digital motion controllers. The concepts
illustrated in these notes are applicable to a wide variety of DC motors including
brush, brushless, stepper, linear and rotary voice coil motors.

4-45

(%)
75
c =
o
= 9
o =
o%
[0}
<

Fr- - ————————————— 1
1 [s |
1] s |
S L Digital !
COMMAND Ql
s [b ARRCESR Fiter
T I e
g POWER
A &
: c AMPLFIER
e o oo o o o e cme o e e e e — — - — -
MOTION
CONTROLLER

20

s 3

85 DC MOTOR
32 INCREMENTAL

3" ENCODER

Figure 1. A Digital Motion Control System

Digital Motion Control Systems

Ablock diagram of a closed loop digital motion control system is shown in Figure 1.
Closed loop control systems compare their actual output (position) with a desired
command input (position) and use the difference between them to regulate the
system’s output. The advantages of closed loop control systems over open loop
systems are increased accuracy of the system’s response to a position or velocity
control command and increased bandwidth (speed). The disadvantage of closed loop
control systems is that they can become unstable and oscillate. The ease with which
one can effortlessly design and test digital filters using the SPROC-1400 and
SPROClab makes it possible to quickly and correctly compensate a motion control
system and increase the overall system stability.

4-46

Hardware Design Overview

Controller Component

The controller is the heart of the motion control system. It closes the position
control loop and performs the necessary calculations required to provide
dedicated motor control. The controller either outputs a plus/minus analog
voltage, commutation drive signals or PWM signal to the amplifier component.
Additionally, the controller component does velocity and positional profiling and
interfacing to the outside world via anything from a thumbwheel to a host
computer. The controller must support high speed real-time processing to avoid
feedback loop delays which introduce phase lag, and yet have numerical
precision to support accurate positional, velocity profiling and filtering
calculations. The controller should allow easy interfacing with analog or digital
devices to minimize the number of glue chips required.

Figure 2 illustrates the flexibility of the SPROC-1400 as the heart of the motion
controller. There are four subsystems within this generalized motion controller, a
processor, a host interface, a feedback sensor input signal and control output

signal.

The SPROC-1400 provides the processing power. It calculates the correct velocity
or position profile, monitors the feedback sensor and implements one or more
digital filters. As is apparent from the diagram very few additional glue
components are required to make a master SPROC operational. The processor
subsystem consists of the SPROC, a clock generator, a 8x16K PROM and decoder.
The clock generator provides the master clock for the SPROC chip and the
sampling clocks for A/D converters, D/ A converters and internal event triggers.
A 8x16K PROM and a simple decoder are all that is required to allow the SPROC
to act as a master and self-boot.

%]
2
T o
c =
o
= Q9
o =
oo
N o
<

The Host Interface Subsystem can be as simple as an 8-bit register file to allow the
transferring of commands to, and receiving status back from, the SPROC motion
controller. A interrupt request line can be created by using one the the SPROC’s

GP[0:3] general purpose I/O lines. The host can inform the SPROC that it requires

service by latching a request thru the RTS[0:3] inputs. The SPROC can easily
communicate with 8/16/24/32 bit data buses.

The Feedback Sensor Signal Subsystem provides position, velocity, or error
information for input to the digital filter algorithm. In Figure 2, two types of input

4-47

>
o
2
=
o
=
o
3
12

b UoN23g

PRI Al ned Nal Tha o'
are shown, serial and para.lu The input seri ial port is built into the SPROC and is

capable of excepting 8/12/16/24 bits in either MSB or LSB order. This allows easy
hook-up to serial A/D converters. The parallel path allows the attachment of
quadrature decoder chips, as well as parallel A/D converters.

The Control Output Signal Subsystem drives the amplifier which in turn results
in motor motion. In Figure 2, two types of control output signals are shown, serial
and parallel. The output serial port is built into the SPROC and is capable of
sending 8/12/16/24 bits in either MSB or LSB order. This allows easy hook-up to
serial D/ A converters. The parallel path allows easy attachment to digital PWM
input amplifiers, as well as parallel D/ A converters for analog input amplifiers.

The procedure recommended in this application note for designing the other
components of closed loop systems that employ the SPROC-1400 is as follows:

e Choose a motor to drive the required load. It is desirable to choose a
low armature inertia motor that can develop a high torque to quickly
accelerate and decelerate the load. Motors of this type have a high
torque constant Kt. It is common practice to choose a motor based on
the torque developed by the motor to the moment of inertia of the
motor armature, coupling and the load.

e Choose a digital incremental encoder with quadrature outputs to
monitor the position of the motor’s shaft based on the encoder
resolution and accuracy required for the application. Analog encoder
can also be easily interfaced to the SPROC-1400 and used for
positional and velocity feedback.

e Choose an amplifier to drive the motor. The amplifier must be
capable of supplying the power required by the motor for your load
conditions. Linear amplifiers are satisfactory for low power, however,
switching supplies are recommended for high power applications
because of their improved efficiency and size.

¢ Connect the motor, amplifier, encoder and controller according to the
interconnect specifications of each component.

e Using SPROClab, create your required digital filter design using
SPROCview and SPROCH. After you are satisfied with your deSIgn,
begin testing your filter using the procedure described under

“Testing Your Motion Control System”.

4-48

Optionally, construct a model of the open loop transfer function of the motion
system using Laplace Transforms. A Bode plot showing the phase margin and
gain margin of the open loop system can then be drawn from the open loop.
transfer function. Choose the desired closed loop response. The desired phase
margin and gain crossover frequency for the digitally filtered system can then be
determined from the desired closed loop response.

POWER-ON
RESET pui
CLOCK e
.L GERERATOR | B
Bx16K RESET EXTCLK
PROM & EXTINTBCLK
= DECODE WR% MASTER
= COMPUTE(0)
Ot
SADDRESS(0:3) STXCLK(O)
EADDRESS(0:1) SXDO)
ADDR(13:0) ADDRESS(0:11) STXSTROB(O)
DA DATA(0:23) PO
SRXSTROBI(0)
GPO) | _en2ne an
SRUXD(0) | FoR AaLoG
CMD_REQUEST H1- AMPURERS POWER
HOST INTERRUPT -'+' 8/12/16 BIT / J‘:IP
: BUFFER]
8/16/24 BIT o for MOTOR
HOST BI-DIRECTIONAL ' DAC
COMMANDGS, s o
BUFFER DIGIAL
for W INPUT
HOST 1 AMPLFIER
INTERFACE
“ncs
SERIAL
8/12/16 8 DIGITAL
A/D INCREMENTAL
for ENCODER
or
#polog 8/12/16 BIT
Input A/D

FEEDBACK
SENSOR

Figure 2. Realization of Motion Controllers

4-49

g
.. 2
T 0o
c =
o =
= O
o =
o a
n @
<

>

©

T
=
=4
=
3
o

1p uono3sg

Software Overview

The software required for SPROC-1400 motion controllers is developed with
SPROCIab. As an example, using the SPROClab development system we initially
implemented a standard first order, lead-lag compensation filter. This filter is
commonly used in motion control systems. The filter, pictured in Figure 4A, was
graphically designed and drawn with SPROCview, a signal flow editor in
conjunction with the SPROCcell function library. Notice how few cells were
required to complete the design, which took approximately 10 minutes to input
into SPROClab. The digital filter was designed and developed without having to
write a single line of source code. To generate the required object module for this
filter took less than 1 minute to compile and link using SPROCbuild.

Notice that the initial filter contains the pulse cell. The pulse cell was selected as it
is an important element for testing the filter’s performance by analyzing the
motion controller system’s response to a step function. Step response provides an
excellent vehicle to test the system bandwidth and stability. The encoder cell
provides the positional information from the encoder and is so labeled. The minus
summing junction provides the error term, i.e., the difference between the
projected position and the actual position.

If a particular motion system design appeared to be suffering from a bad
resonance, possibly due to the combination and interaction of the amp/motor/
load, a sine wave cell can replace the pulse cell to determine the fundamental
resonant frequency (Figure 4B.). Notice that a feed forward loop was added to
bypass the digital filter and the encoder amplifier gain was set to zero so the
system is essentially in an open loop configuration. Once the resonant frequency
has been isolated, a notch filter can be designed with SPROCfil and added to the
signal flow diagram with SPROCview. The resulting system is shown in Figure 3.
Once the resonance has been eliminated the step response testing can continue.
Although a system can appear stable by adjusting the filter constants, it is
strongly recommended to determine the open loop phase margin and gain to
determine the allowable limits of compensation that can be added without
causing marginal system instabilities.

As an added example, Figure 5 shows an implementation of a finished PID
(Proportional Integral Derivative) filtering system. Notice that the minus
summing junction cell is now connected to a profile generator cell, as well as the
encoder input cell. The SPROC motion controller, under host control, can now
accept and execute positional and velocity profile commands.

4-50

suoneolddy
‘t uonoag

Jay14 uoptesuadwio) Be-pea 19pi0 1S11d + JalId YOION °€ ainbig

N Ba00N
0=
d
1w
l
16210 0d0=030
9C-=19 A 0000001=84
Tpod=pep sT1=0a 00 (=uod HOION=OBC (B=8uR
JIo):: WNE \&z_ H \j Feiley
_SE:]V — 7 _/_ T DV 7 _Q T -
o 1] W i) ST 89 TH0H

4-51

qy ainB)4

4=10

%=1
10
wodpe WNE
1075 oS
e —{ 3 <
i
B
i) I
ey ainbi4
14=0
[
- d=pep <1\
&3 n-am — e
1014 uoypsuedwod '= W !
Bo1-poe 1epIO isad
Lo L]

Section 4:
Applications

4-52

suoneolddy
‘P uondag

Joy14 uonesuadwo) (aid) eAneapaq jeabaju) jeuojuodosd °s aunbi4

o

._.ﬁ_]

I BN

god=3p gd

10 85 1) 1N \!
e T 1 N ; T .\. T 1

e B

L0

\

O

pWe \ N+ p/ep Py + e - Iy = wn

9|14 uoypsuadwod
(Qld) aApAuRQ |pibau| [puoiuodold

4-53

>

o

°
=
2
=
3
w

‘p uonoag

Testing your Motion Control System

After building a SPROC-1400 motion controller and connecting it to your DC
motor, optical encoder, and amplifier you are now ready to optimize the motor’s
performance for the given load situation. This involves adjusting the digital filter
coefficients to achieve maximum system bandwidth, as well as minimizing system
errors and oscillations.

The system performance is optimized by testing its step response. This is where the
SPROClab development environment excels. Using the built-in pulse cell, one can
inject a step response profile and monitor the actually encoder position with the
SPROC probe in real-time. The step size, in encoder counts, should be small
enough so that the amplifier is operating in its linear range.

The analog motor’s response to the step input is observed by converting the
encloder position into an analog signal with the SPROC probing DAC connected to
an oscilloscope. One of four types of responses will be observed; underdamped,
overdamped, critically damped, and unstable. These responses are shown in
Figure 6. The filter coefficients should be adjusted until the critically damped
response is observed. Typically, a response with fast risetime, minimum overshoot,
and fast setting time is desired.

Once the step response is optimized, the system bandwidth can be approximated
from

BW =.35/Tr

BW = System Bandwidth in HZ
Tr = Risetime between 10% and 90% of step response in sec.

4-54

Jrosmon POSTION

OVERDAMPED CRITICALLY DAMPED
TME —TVE

.W
+§
c =
o
20
S 2
:3%
[%2]

<

UNDERDAMPED UNSTABLE
TWE T™E
Figure 6

4-55

>
°
°
=
e
s
3
®

'p uonoag

Implementation of an Adaptive Line Echo Canceller
by Dan Greenwood

Introduction

Telephone circuits are susceptible to a form of electrical echo, also known as line
echo, which occurs due to mismatched impedances between various connections
in the existing telephone system. A hybrid is a 2-to-4 wire circuit which is used to
direct the speech signal flow between two signal paths. While hybrids have been
implemented using integrated circuits, most higher end telephones still use two
transformers for a hybrid so that there is an isolation between the two telephone
systems.

Line echo occurs when a portion of the transmitted signal is reflected back to the
transmitting system due to mismatched impedances in the telephone lines
between the two end users. Since the impedance of the telephone system between
the two callers depends on the distance of the telephone lines, it is impossible to
insure a matched impedance for all cases. Historically, a method of insuring that
the transmitted signal is not reflected is the use of echo suppressors. The echo
suppressor is a voiced activated switch which opens the return path to prevent
line echo from occurring. The disadvantage in this approach is that the telephone
conversations are limited to being half-duplexed. That is only one person may
speak at a single time. Echo suppressors are still commonly used in hands-free
telephones and teleconferencing systems.

The advent of adaptive filtering has allowed the implementation of echo
cancellers which attempt to remove the echo from the return path while not
preventing other signals from passing through. Initially echo cancellers were
implemented only at the central switching office of the telephone company.
However, due to the advent of commercial digital signal processors, line echo
cancellers may also be implemented at a cost effective price on the end
subscriber’s telephone. This has become a common practice especially in the areas
of hands-free telephones, modems and teleconferencing systems.

This application note presents the implementation of an adaptive FIR filter
configured as a line echo canceller. A new SPROC cell is developed which can be
implemented on 50 MHz SPROC signal processor. A brief background on
adaptive filters and echo cancellers is presented along with the system results.

4-56

Line Echo Canceller

The area of adaptive filtering has grown widely in recent years. Adaptive
algorithms may be used in such applications as speech coding, system
identification, active noise control, system modelling, and echo cancellation. The
adaptive transversal (FIR) filter is the most commonly used in industry. This is
due to its limited complexity, great flexibility, and an ability to insure system
stability. Figure 1 shows a typical adaptive FIR filter scheme.

din) + eln]

>
) T

FIR Filter i

\
\
'"—‘E\dapﬁve Algorithmj—‘

n
e
7T o
c =
o ®
= 0
o =
5 a
(%]
<

N\
\

Figure 1. Typical Adaptive Filter Scheme

4-57

>
el
T
=
]
=
o
3
(7]

'p uoN2ag

where:
x[n] = filter input
d[n] = desired or training signal
yln] = filter output
e[n] = system error

Widrow’s Least Mean Square (LMS) algorithm is the most common adaptive
algorithm used. The LMS algorithm is implemented in the following manner:

e[n] =d[n] - yln]
win+1] = w[n] + u*e[n]*x[n]

where u is the step-size which controls the speed of convergence of the algorithm.
A larger u will increase convergence speed while perhaps causing system
instability and excess mean square error after convergence. Smaller u values
while requiring longer convergence times, result in a more stable system once
convergence has occurred.

The implementation of a line echo canceller (LEC) consists of an adaptive FIR
filter which attempts to adaptively model the telephone hybrid’s response. Once
the filter has converged, the line echo may be predicted from the known
transmitted signal and then subtracted from the return signal thereby cancelling
the echo in the return path. The adaptive line echo canceller set-up is shown in
Figure 2. The system has two inputs and one output: x[n], d[n] and e[n]
respectively. The input x[n] is the near-end speakers transmitted signal. The
return signal from the hybrid is d[n] and is the LMS training signal. Finally the
error signal e[n] is our return signal after echo cancellation.

A line echo canceller SPROC cell can be divided into two functional blocks: the
FIR filtering and the LMS coefficient update. In order to partition this task more
evenly among the available GSPs of the SPROC, it is advantageous to subdivide
the LEC implementation into more than one sub-cell. The LECBLOCK cell
consists of two separate cells: AFIRX and LMSX which share a common
coefficient/data vector. The assembly files for these three cells are included for
reference in listings 1 through 3. The LECBLOCK cell has two user specified
parameters: mu and length. This allows the line echo canceller to be modified
easily for different applications.

This application provides an example of one method of allowing two cells to
share a common memory vector. The line echo canceller uses a hierarchical text
approach to implement a single block in the signal flow schematic which contains

4-58

more than one internal cell. The advantage in this method is that a complicated
task may be subdivided into several tasks which may be partitioned onto more
than one GSP of the SPROC. This is important since the SPROC compiler will not
partition a single cell over multiple GSPs. Therefore by dividing the line echo
canceller into separate functional blocks we can utilize more of the processing
power of the SPROC.

XMT Signal (x[n])

. EIR Telephone To Central
ws | Hybrid Office

/JZ\ + RCV signal (d[n))

Post Cancl. {(e[n]) _/

%]
2
T o
c =
o ™
= Q9
o =
o Q
wn @
<

Figure 2. Adaptive FIR Configured as a Line Echo Canceller

The line echo canceller was implemented in two manners for testing. Initial
testing was performed by using a NOISE generator cell as the transmitted signal.
The white noise signal was fed though a bandpass IIR filter and amplifier to
model a telephone hybrid response. The bandpass filter was designed using
SPROCil and has a passband between 300 and 3300Hz to be consistent with the

telenhone svstem. The amplifier cain was set to implement a 6 dB loss, i.e. gain

SCATPAIVAIT Oy Sl pPRriavi: /& VWGRS O W QKR VS, - DRAat

=0.5, which is a common estxmate of the return loss of a line echo signal. Figure 3
shows the signal flow diagram for this test implementation.

4-59

¢ aInbi4

§'g=ured

%0089Ay=oads
dAV WAL
1 2 T UH [7
8Z1=8uo| IdAYV LTI orr=e8%1n
guod=1sap 10°0=nw 0°0008=21e1
1No s FooIg03] 1Z1=3u0z
4SION
—H'_J._I—|||DI_IY||| m
I 1
[/ 1 Lf_j,_
LLNOYWAS 1081

19SION

Section 4:
Applications

4-60

Figure 4 shows the signal flow diagram for an actual line echo canceller system
which may be placed in a telephone system. The system utilizes both serial input
channels and one serial output channel of the SPROC signal processor. The
system may be placed in an existing telephone system by re-routing the signal
from the near-end speaker’s transmitter and also the received signal from the
telephone hybrid. The serial output port is directed to the near-end speaker’s
receiver/speaker.

XMT
\ 1 @
nann 55
__/ €z
= Q
SER_IN g a
zone=tzl @ -:cw:l
rate=8000.0
trigg 10 2 LEC1 SEROUT1
1 1
LECBLOCK SER_OUT
mu=0.01 dest=port2
RCV length=128

SER_IN
zone=tzl
rate=8000.0

trigger=portl

Figure 4

4-61

>
©
T
=
o
=
[o]
3
w

‘b uonoag

Summary

An adaptive line echo canceller cell was developed for the SPROC signal
processor. The implementation divided the adaptive filter into stages which could
better utilize the processing power of the SPROC. The line echo canceller was
tested with an order of 128. The application tested using the 20 MHz
SPROCboard at a reduced sampling rate. The overall cancellation using the white
noise generator was over 25 dB.

The first test using the noise source as the transmitted signal can be implemented
on 1.1 GSPs on the 50 MHz SPROC. The number of data locations used in the
implementation was 351. The application required 169 program locations. Test
two using actual serial inputs requires 1.0 GSP on the 50 MHz part. The data and
program space required for this application were 282 and 123 respectively. The
remaining GSP power may be used for other tasks including the implementation
of control cells which may be used to control the line echo canceller adaptation.

This application demonstrates a method defining common data segments
between separate cells. This provides a method of sharing large amounts of data
between cells without placing separate wires between the cells. This provides a
less complicated signal flow diagram which is also more flexible. The SPROClab
development system allows the user to quickly determine the proper values for
parameters such as the LMS step-size.

4-62

Listing 1.

/******i**************i*********it*******i’***********************

.
afirx.sdl *
* ********************i*t'k**********t*************************'k**/

asmblock afirx { %$subr=default} (xn ; yn)

//
duration 4*(%length-1)+10; // lines of code = 11
//
begin
lda xn // Areg = x[n]
ldb #lec_vect // Breg points to start of lec_vect
sta [B+%length] // store new x[n] in lec_vect
1dl #s%length-1 // initialize loop counter register
1dd #1 // initialize Dreg for decrement step
AFIR1: 1ldx [B+L+%length] // Xreg = x[n-L] oldest x value in vector ”
mpy [B+L) // Mreg = x[n-L]*w([n-L] s 5
djne FLOOP // decrement Lreg S &
FLOOP: 1ldx [B+L+%length]) // Xreg = x[n-L] & MPY complete '§.§
mac (B+L]) // Mreg += x[n-L]*w([n-L] 2 g-
stx [B+L+%length+1]
djne FLOOP // check Lreg and loop if needed
!/
lda MH // Areg = MH = y[n]) sta yn // save yln]
// end of asmblock afir
end
Listing 2

/'k******************************t****‘k***************************

* lmsx.sdl *
* ***/

asmblock lmsx { %subr=default } (dn, yn ;en)

//
// End of Filtering, Now calculate error e(n] = d[n] = y[n] (Mreg)
// -

verify (%mu>= 0.0 && %mu <= 0.25), ‘Specify step-size, 0.0 <= mu, 0.25';
//
duration 5*(%length-1)+14; // lines of code = 17

4-63

//

begin
// End of Filtering, Now calculate error e[n] = d[n] - y(n] (Mreq)
//
LDA dn // Areg = d[n] = training signal
SUB yn // Areg = d[n] - y[n]
STA en // store e[n] for output
// Calculate mu * e[n)
1dx A // Xreg = el[n]
mpy mu // Mreg = mu * el[n]
//
LDB #lec_vect // Breg points to start of lec_vect
LDD #1 // initialize Dreg for decrement step
//
// Perform Widrow’s LMS update: w[n+l] = w[n) + mu * e[n] * x[n]
//
UPDATE: 1dl #%length-1 // re-initialize loop counter register
1dx MH // Xreg = mu * e[n]
%;tn mpy [B+L+%length+1) // Xreg = x[n-L] * mu * e[n]
218 lda [B+L]) // Areg = w[n) current coef.
8) djne ULOOP // decrement Lreg
g & ULOOP: add MH // Areg = w[n] + mu * e[n] * x[n-L)
@ sta [B+L+1) // store updated coef, w[n+l]
mpy [(B+L+%length+1] // Mreg = mu * e[n] * x[n-L]
lda [B+L]) // Areg = w[n], current coef
djne ULOOP
//
add MH // Areg = w(n] + mu * e[n] * x[n)
sta [B]) // store last coefficient
// end of asmblock lms
end

4-64

Listing 3
/*t*t********t***

* lecblock.sdl *

K Kk Rk Kk ok k ok ok k ok k ok ok ok R kK Ak Ak Kk kA ok ok k ok Kk ok sk ok ke ok Kk sk sk ok ok ok Kk sk ok ok ok Kk sk ok ok ok ok ok ki ke ok ok ok ok
Function:

Line Echo Canceller using user specified order Adaptive FIR
Filter using Widrow’s Least Man Square Algorithm (LMS).

Arguments:
Parameters:
fix xn
fix dn
fixed mu 0.0 <= mu <= 0.25 // LMS step- size
int length // adaptive filter length 5 g
&3
Algorithm: 5 2
5 8
P g
d[n]
+
SUM
______ - ——eln]
x[n] FIR l

e(n] = d[n] - y[n]
Widrow’s LMS Algorithm Coefficient Update
win+l] = w(n] + mu * e[n] * x[n]

*/

4-65

Jhhkkkhkkhkhkkhkkkhkkkkkkkkx /

/ * inline code */
/********************/

block lecblock { %$subr=default, %mu, %$length } (xn,dn ; en)

// verify (%mu >= 0.0 && %mu <= 0.25), ‘Specify step-size, 0.0 <= mu ,
0.25';

//

variable fixed yn;

variable fixed mu = %mu;

variable fixed lec_vect[2*%length+2]=0.0;

//

begin

afirx afirxl

//

b uonoag

>
el
T
=
1Y)
=
]
3
w

4-66

FRACTIONAL SAMPLE RATE CONVERSION
APPLICATION NOTE

by Stephen J. Sheslow
Abstract:

Digitally sampled analog signals at a known sample rate can be converted to a
new sample rate using a fractional sample rate conversion method. This method
uses the time delay properties of the Fourier Series to reconstruct the final sample
rate desired using a Finite Impulse Response, FIR, reconstruction filter with filter
coefficients related to the current time difference of the original sample and the
desired final sample.

Introduction

'
M =
T o
c =
O <
= 9
-
%}
<

Analog band limited signals used by digital systems are all sampled using an
analog to digital conversion process. The original analog signal once converted to
a sampled digital representation is now described by the set of digital samples
and is only defined at these discrete time samples. The properties of a sampled
analog signal represent a combination of the properties of the original analog
signal and the sampling function. The sample rate is related to the spectral
properties of the original continuous time signal transformed into the discrete
time spectrum by the sample rate. The resulting discrete time signal can be used
to reconstruct the original continuous time signal.

In many cases it is desired that the original sample rate be changed to a different
final sample rate. The sample rate conversion between the two sample rates can
be accomplished by using the original samples of the discrete time signal in the
discrete time spectrum. One technique for discrete time sample rate conversion is
fractional sample rate conversion. This technique uses a Finite Impulse Response,

FIR, filter for reconstruction of a single output sample based on a finite set of the
input samnles, The coefficients of the FIR filter are modified for each desired

HPULl SQILPICS, 111C LUt IC 2 AN AMILCE GIC Calil uToiicu

output sample based on the time delay between the two samples.

The SPROC signal processor will be used for this sample rate converter. The
SPROC signal processor’s hardware architecture and the SPROClab signal flow
diagram development tools are ideal for this sample rate conversion application.

4-67

>
k]
°
=
2
=
3
1%

‘t uonoag

The FIR filter used for reconstruction of the output sample requires a new set of
coefficients for each output sample. The SPROC data flow manager allows real
time access to the fast internal memory of the SPROC signal processor without
interruption of current algorithm. The four parallel signal processors of the
SPROC signal processor allow an FIR filter to be accomplished in decimated
parallel blocks for shorter propagation times of output samples.

Sample Theory Basics

The conversion of analog signals into a series of discrete time samples requires
some knowledge of the original analog signal’s characteristics. The original signal
should be band limited so it can be represented by a Fourier Series expansion of
the original signal. The constraint on the bandwidth of the original analog signal
to be sampled will allow the sample rate of the signal to be a finite number. A
sampled signal has characteristics in the frequency domain that are related to the
original bandwidth of the signal combined with the characteristics of the actual
sampling function which will be discussed.

A technique to sample a continuous time signal into a discrete time signal is to
multiply the continuous time signal by a periodic series of the delta function. The
delta function, &(x), is defined as one for the input zero and zero for all other
inputs. The mathematical convolution of a peridodic delta function and a
continuous time signal results in an infinite series of discrete time samples based
on the frequency of the periodic delta function.

Sample Rate Conversion

A sampled continuous time signal at some original sample rate can be converted
to a new sample rate using digital signal processing of the original discrete time
signal. The original discrete time signal samples are used to generate new
samples at the desired sample rate. One technique for the conversion of sample
rates is to reconstruct the new periodic sample sequence as a shifted in time
representation of the original sequence. The properties of the Fourier Series
related to time shift are the basis of this method.

The time shift properties of the Fourier Series transform state that a sequence of
time domain samples, shifted in time, is equal to the Fourier Series transform of
the original unshifted signal samples multiplied by the exponential function
evaluated at the time shift value. This property can be applied to sample rate
conversion using a FIR filter for the exponential function multiplication.

4-68

The Fourier Series time shift property can be applied to a method for sample rate
conversion between two arbitrary sample rates. The sample rate desired can be
represented at each point as a time domain shifted version of the original sample
value. The actual time shift between the two samples can then be used to
determine the value of the exponential function needed to calculate the new
sample rate. This technique is referred to as Fractional Sample Rate conversion.

Finite Impulse Filter Reconstruction

The original sampled signal data can determine the desired output samples using
a finite amount of input samples. This finite set of original samples can be used to
reconstruct the desired samples based on the addition of weighted original
samples representing the current relative time delay of the desired samples. The
desired sample at a known time is related to the original sample by a known time
difference. This will determine the filter coefficient values, or weights, to be used
for the current desired output of the conversion. The number of samples used for
the Finite Impulse Response reconstruction will affect the filter length and
therefore the hardware requirements.

The Finite Impulse Response, FIR, filter will introduce some error as related to the
infinite filter theoretical response. To decrease the effect of using only a finite
number of original samples for the desired sample calculation the reconstruction
filter coefficients are multiplied by a window. The window will taper the values of
the filter coefficients to minimize the effect of using only a finite number of filter
taps, or coefficients, for the reconstruction. This window method is frequently
used when a finite sample length results in a rectangular window.

A rectangular window of samples is a finite set of samples. This window will be
zero on either side of its bounds and the sample value inside its bounds. A
rectangular window results in a instantaneous change from zero to full value of
the windowed input samples. A series of alternative window functions have been
explored which allow the input samples to gradually increase to full value at the
center and then decrease to zero at the lower and upper bounds of the sample
window. By removing the step function of the rectangular window better
reconstruction of the new desired sample will result.

4-69

w
O =
T o
c =
o 3
- O
QO =
O Q
n o
<

>
°
T
5
2
e
3
w

'p uonoag

The algorithm discussed requires the FIR reconstruction filter to be propagated
for each desired sample. Each new sample that is calculated is related to the
original sampled signal and the current time delay for the desired sample. This
time delay will determine the value of the filter coefficients for the FIR
reconstruction filter. In order for the algorithm to be performed in real time, the
FIR reconstruction filter must not take more than one sample period of the
desired output frequency. The filter coefficients must be altered during the current
calculation to prepare for the next output sample. This requirement of the total
time duration of the filter coefficient update and output calculation of the filter
allows the system to continue at the desired output sample rate.

SPROC Implementation

The STAR Semiconductor SPROC signal processor is ideally suited for Finite
Impulse Response, FIR, reconstruction filter, Fractional Sample Rate, (FSR)
conversion. The architecture of the programmable signal processor allows for the
real time uninterrupted access to internal program and data memory during
execution. This feature allows for the different filter coefficients to be written for
the FIR reconstruction filter as the current filter coefficients are used by the filter.
The data flow manager of the SPROC hardware allows this real time access to
memory and permits the processor to continue execution of the current
reconstruction filter as the new filter coefficients are supplied.

In addition to the ability of the SPROC signal processor to allow for real time
access to program and data memory internal to the device, the SPROC signal
processor has four parallel processing general purpose signal processors, GSPs,
per single device. Each GSP executes its own process as scheduled by the
software. The actual SPROC processor code is generated based on a signal flow
graph representation of a particular algorithm. All the real time considerations
and data variable requirements of the signal flow graph for a particular algorithm
are handled by the SPROClab software development tools.

The general purpose signal processors, GSPs, of the SPROC signal processor have
an architecture specialized for the mathematical processing associated with most
signal processing algorithms. Each GSP has a 24-bit data path and a 56-bit
multiply accumulator to minimize the effect of fixed point multiplication. Each
GSP has a flexible address generation block for use in algorithms that use data

4-70

arrays such as filters. The address generation is structured with a loop register, a
base register, a frame register, and a decrement register.

Status

- OR
Data

Decrement Base Frame
D register L register B register F register I
Oprand 12 16
2
15 5 g
c =
Offset I I - o3
O register (@ <c(l
151 | [§ 1
22 Q < uuxr/
Data
Access
Indexed
Addressing

AND

Data Address Access

Figure 1

SPROC Firmware Structure
The SPROC signal processor firmware is developed based on the signal flow

diagram of the fractional sample rate converter algorithm. The algorithm will
accumulate the samples required for the output sample of the reconstruction FIR

4-71

filter. When the output sampie is required the SPROC signal processor wili
calculate the output of the filter and be loaded with the next set of filter
coefficients. The coefficients are related to the current time delay of the desired
output related to the original input. This time delay results in an index for the
coefficients for the FIR reconstruction filter. The coefficient index is used to allow
the next set of coefficients to be loaded into the internal memory of the SPROC
processor. The firmware signal flow diagram is shown below:

Phase Detector <
and Clock
Coefficient Control Gen.
SPROC «——
-

Input Digital Output
Data Signal Data
Stream Processor Stream

Figure 2

The firmware for the sample rate conversion shows the input data entering a
serial input block of the SPROCcells function library. The serial input block is all

4-72

that is required for the input of data to the SPROC signal processor. The input of
the signal flow diagram from the serial input block has a specified sample rate as
a parameter for the SPROC software to create the application. This sample rate
will generate a trigger for the signal flow to be calculated. The data collection
routine for the sample rate converter as defined by the serial input block of the
signal flow diagram will provide the data for the actual FIR filter of algorithm.

The firmware for the SPROC signal processor uses a block representation of an
FIR filter for code generation of that filter. The FIR filter is therefore placed
between the input and the output of the algorithm. The FIR filter block requires
that a coefficient file be specified. The application requires the coefficient set to be
changed for each output sample. The actual hardware address of the coefficient
set is used by the microprocessor of the application to provide the coeffiecient set
in the internal memory of the SPROC signal processor. This memory access
permits uninterrupted execution of the FIR filter during coefficient updates.

The output of the filter internal to the SPROC signal processor is connected by the
firmware to the serial output block. This block of the SPROC firmware is all that is
required for the output of the filter algorithm to be output at the serial port of the
SPROC signal processor. The serial output block requires only the port
designation as a parameter for the block. This will then map the output of the
signal flow diagram, representing the firmware, to the hardware of the serial port
for output.

SPROC Processor Interface

The SPROC signal processor permits access to the internal memory of the device
by use of the Data Flow Manager, DFM. The DFM controls the access to the data
and address buses of the SPROC signal processor. The SPROC signal processor in
a slave mode configuration appears to a microcontroller as a section of static ram.
The SPROC signal processor therefore interfaces to a microcontroller easily and
needs no interrupt handler or context save routines like other processors. The
DFM permits access to the internal memory by both the serial input ports, both

the serial output ports, the parallel port, the serial access port, and the on chip
software directed probe. The nrobe on the SPROC si nﬂnl processor can be

MUALVV LI L NI L V ViV y ViVL Vi I WA AN VIS tl VNLOIOUVE LUl

assigned to any signal of the signal flow diagram to allow investigation while the
SPROC signal processor is executing algorithms. Probing is performed without
interrupting the GSPs.

4-73

w
.~
T o
c =
o
= 9
° =
58
%)
<

The sample rate conversion algorithm will be accomplished using a micro
controller to write the new filter coefficients into the filter space used by the
SPROC signal processor. The microcontroller will calculate which set of
coefficients represent the current time delay between the desired sample and the
original sample rate set of samples. This calculation of time difference is cyclical
for two related sample rates and therefore the set of coefficients is finite. The order
of the set of coefficients is also cyclical. The microcontroller interface is concurrent
to the calculation of the current output sample calculation. The microcontroller
will write the coefficients directly into :~.. SPROC signal processors internal data

memory.

To Finite

52 Impulse

[

2 s Data Response Data

3= p.| Serialin Filter Serial Out >
Algorithm

Input Clock A *

Ouput Sample
Rate Clock

Filter Tap

Access
and

Control

!

Current Coefficient
Index

Figure 3

4-74

Conclusion

The SPROC signal processor’s hardware architecture has the data flow manager
for independent access to the internal memory of the processor. The ability to
access this internal memory during program execution allows for adaptive FIR
filters to be updated while the filter is in operation. The architecture of the
SPROC signal processor is therefore optimum for adaptive filters and filters that
require larger coefficient set sample spaces. One such large filter coefficient set
application is the fractional sample rate conversion reconstruction filter. This
reconstruction FIR filter is propagated for each desired output sample and the
filter coefficients are updated for the next sample concurrently via the parallel
port of the SPROC signal processor.

The parallel architecture of the four general purpose signal processors, GSPs,
allow for more processing power resulting in greater signal throughput. These
mathematical accumulators of the SPROC signal processor permit large FIR filters
to be realized in the parallelization of smaller FIR sections executing
simultaneously to achieve the desired filter length. This parallelization of the
GSPs allows filters that can run concurrently. It also would permit partitioning of
large filters over many GSPs if needed for greater real time performance.

v
A =
T o
c =
o =
= O
O =
58
n
<

The ability to develop application specific firmware with the use of signal flow
diagrams allows the designer to complete the application firmware quickly. The
designer can concentrate on the signal flow of the algorithm and not the actual
code required. The SPROClab development tools handle the actual SPROC signal
processor code generation from the designer’s signal flow diagram. This signal
flow diagram once processed into a loadable file for the SPROC signal processor
can be probed in real time during its execution based on the Data Flow Manager,
DFM, of the SPROC hardware structure and the SPROCdrive software of the
SPROClab development system.

4-75

>
o
2
5
2
5
3
»

b Uo123g

Application of Linear Phase Filterbank to Frequency
Shapin g Digital Hearing Aids

by Brian M. Finn and Sen M. Kuo, Northern lllinois University

Introduction

As human life expectancy increases, environmental noise increases, and society’s
acceptance and desire for high sound pressure music increases, so does the risk
for noise-induced sensorineural hearing loss. Hearing loss often associated with
the geriatric population is now a problem for those of all ages.

At this time, hearing improvement offered to those with sensorineural losses
often is in the form of an amplification system, with little or no adjustable
compensation for specific spectral enhancements. As sensorineural hearing loss is
often sloping, or perhaps notched, it is of practical significance to design a hearing
aid with multiple filterbanks to provide useable gain at the frequencies where the
ear is lacking sensitivity. As no two hearing impaired listeners have similar
thresholds of hearing vs frequency and traditional frequency shaping has
drawbacks of those associated with all analog filters, the motivation for a digital
based multiple filterbank hearing aid is found.

Several ideal properties are thus approached in the initial design phases of such a
system. As a filterbank is to be the spectral inverse of the ear’s residual hearing
sensitivity, sufficient bands must be implemented to allow custom magnitude
modification. The filters are also to be linear phase to not produce any audible
distortion; likewise, the group delay is to be minimized (<5ms) to not produce
temporal distortion between the listener and his environment. Because of the
linear phase requirement, symmetrical FIR filters must be implemented; however,
a multiple series of FIR filters with sharp cutoffs necessary to prevent spectral
leakage between bands requires large data buffers and significant processing
power. The Interpolated FIR filter, with perfect symmetry, complementary
outputs, and a minimum number of multiplications per sample is an elegant
solution to the problems associated with the ideal properties of a digital filterbank
hearing aid. INTERPOL, the interpolated FIR filter, has been implemented in the

SPROC description language, as shown in Listing 1.

4-76

v/a

suoleoijddy
'p uonodag

1 94nBj4

euoydaopu

4-77

>
©
°
=
Y
=
o
3
w

't uonoag

The first step in designing the filterbank is to determine the number of bands (L)
needed for a specified frequency resolution, where each band is fn/L wide and fn
denotes the Nyquist frequency. In this application eight bands were chosen as a
balance between spectral resolution and computational resources. By
interpolating a lowpass halfband filter, -50dB stopband attenuation, with an L
factor (%zeroes in INTERPOL cell) of eight, five pass bands and four
complementary pass bands are generated. This cell is analogous to padding the
original seed impulse response with L-1 zeros between successive seed
coefficients. The lowpass filter seed coefficients were generated in SPROCfil by
use of the Parks-McClellan algorithm. In generating this “soft rolloff” filter only
nine coefficients are required, as N the filter order (%coefs in INTERPOL cell) is
always to be odd for symmetry. As stated one of the factors for choosing an
interpolating FIR filter is that the complementary output yc(n) is computed by
subtracting the transversal output y(n) from the input x((N-1)/2) in the input
data buffer. This results in a highly efficient cell algorithm whose first stage
requires coefficient data storage of N, data storage of N + (N-1)*(L-1) (%length in
INTERPOL cell), and N multiplications per cycle. Figure 2 shows the FIR
interpolating block diagram with both passband and complementary passband
outputs.

4-78

suoljeorjddy
'$ UOID3g

Z ainBi4

({3 |N=
1
Buojl 7 s)o01g Aejeq 210N

4-79

‘p uondag

>
]
T
=
2
=
3
©w

From the first filter step, where pass bands are separated on an even/odd basis,
sub-filter banks proceed to decimate the input signal spectrally so that individual
gain may be applied to each frequency band in any arbitrary manner. Using the
initial seed coefficient file, an interpolation factor of L= 4 is used to generate the
next level of spectral decimation on the initial output. The complementary output
is passed through a different seed filter with an interpolation factor of L=2, that
splits the inner two even spectral bands from the outer two spectral bands.
Because this seed filter was a lowpass halfband with a much narrower transition
band, 13 coefficients are required. From here further interpolating sub-filter banks
with either seed file decompose the signal into the final band-passes, with each
successive filter requiring a lower order as the signal is being progressively
decimated. A single output LP filter is required to remove the alias (9th) band
from INTERPOL 3’s output. Table 1 gives the seed filter coefficients, while Figure
3 shows the signal flow and filter magnitude transfer functions.

Table 1
Coefficient Seed 1 Seed 2
h(0) -0.01550278 | -0.01074323
h(1) -0.04962827 0.0250155
h(2) 0.03100575 | -0.01608604
h(3) 0.289573 | -0.07562522
h(4) 05 0.2192462
h(5) 0.289573 0.3014174
h(6) 0.03100575 05
h(7) -0.04962827 0.3014174
h(8) -0.01550278 0.2192462
h(9) -0.07562522
h(10) -0.01608604
h(11) 0.0250155
h(12) -0.01074323

4-80

2t

3

E; | band 1 out

i

-

L

hebd-1

=

inferpal 8
M | 4
3 band § out
) a4
Interpal 4
" band 3 out
} band 7 out
5 &
c =
°3
s
Y g
Interpol 6
Y band 2 out
; Yo band 8 out
Inferpol 7
band 4 out
~
3 — band 6 out

Figure 3

4-81

>
o
°
=
3
=
3
»

't uoNoag

Following the signal paths through Figure 3 one sees that each path has a slightly
different number of delays imposed by the transversal filter networks. Ideally it
would be possible to add delays to the paths so that there was a common delay to
each band, equal to the delay of the longest path. In this design, sampling at

11 KHz, only the path producing filterband 1 (6.2 ms) exceeds the ideal delay limit
of 5 ms. Because of the minimal sampling rate used, delay issues are not
addressed in this real-time implementation.

Once the filterbank has been realized, the SCALER cell is used to adjust the band
level in +/-6 dB increments. The just noticeable difference hearing level is
approximately 3 dB, so bit shifting in 6 dB increments is reasonable to provide
magnitude shaping to the hearing impaired listener. It is noted that one of the
most desirable qualities of the digital filterbank hearing aid is that the response
can be adjusted in a real-time prescription fitting method. By writing the shift
level into the scaler, a patient or audiologist has a method of adjustment to
provide for the optimal frequency shaping curve.

In real time evaluation of the filterbank hearing aid, which is schematically
represented in Figure 4, careful attention must be given to not saturate the D/A
converters by imposing such a high gain in one or more bands that the output
level exceeds their threshold of +/-3.0V. It was also found that the non-essential
bands could be scaled below unity to prove for maximal shaping of the most
essential bands.

Using the 20Mhz SPROC chip, a sampling frequency of 11,000 Hz was
implemented with the external A/D clock input. At this rate and chip speed
3.9/4.0 GSP’s were utilized, and 345 data and 594 code locations were needed.

This same application with the same sampling rate of 11,000 Hz when compiled
for a 50 MHz SPROC requires 1.5/4.0 GSP’s. Assuming the 50Mhz SPROC chip
were used at 16,000 Hz sampling rate 2.1/4.0 GSP’s would be utilized. This extra
processing power could be used to increase the bandwidth of the filterbank to

8 KHz, perform amplitude compression signal conditioning, and implement an
adaptive filter to perform acoustic echo and feedback cancellation.

4-82

The SPROClab development system is an excellent tool for what is termed as the
“master hearing aid” in developing digital based clinical audiology. By using the
immediate “write” commands, audiologists can quickly determine the optimal
frequency curve for their patients. Once the prescription is fitted, the code and
coefficients may be downloaded to the individual’s hearing aid processor. Likewise
as hearing sensitivity changes so may the code, in an equally convenient manner.
This application has the advantage of providing a bank of linear phase FIR filters
implemented on the parallel architecture of the SPROC signal processor , where
most multi-band filters implemented are required to use IIR filters with non-linear
phase.

»
e
< o
c =
o 3
= O
o =
g
n
(S

4-83

>

©

T
=
Y]
=3
o
=}
1]

' uonoag

4-84

Figure 4

Listing 1
/*
Interpolating symmetrical FIR filter
*/
asmblock interpol {%$subr=default, $zeroes, scoefs, %length, $coef_data}

(in;out, cout)

variable fixed coef vec([%coefs] = $coef_data;
variable fixed data_vec(%length]=0.0;

duration 12+6* ($coefs-1)+4+3+3* (%length);

begin
LDA in
LDL #%coefs-1 //Initialize L register
LDB #data_vec //base of data
STA [B) L8
LDF #coef_vec //base of coef c £
LDD #1 //set up decrement value '% g
/1 ge
LDA B //A reg = data_vect address <
ADD #%length-1 //A reg = length-l+data_vec add
LDB A //B reg = A reg = end of data
LDX [B]) //X reg = x[n-length-1]
MPY (F+L] //M reg = x[n-length-1]*h[n-coefs-1]
DJNE LOOP1 //decrement L reg by 1
//
LOOP1: LDA B //A reg = B
SUB #%zeroes //decrement B reg to next valid data
LDB A //replace B reg
LDX [B] //place next x in X reg
MAC [F+L] //Mult/Acc
DJNE LOOP1 //repeat loop
//
LDB #data_vec
LDA ([B+%length/2-1) //A reg = x[n-length/2-1)
SUB MH //A reg = yc[n] = x[n-length/2-1]-
y(n]
//
STMH out //filter output
STA cout //complementary output
//

4-85

LDL #%length-2
LDB #data_vec
LOOP2: LDX [B+L]
STX [B+L+1)
DJINE LOOP2

//data shift

//

end

‘t uonoag

o
o
T

s

Y

=

o

3

v

4-86

Spectral Analysis with Applications on the
SPROC-1400 Family of Signal Processors

Part 1 of 2
by Scott Andrews

Introduction

This two part application note will review the implementation of a DFT algorithm
via the Goertzel approach versus that of a discrete filter bank. Additionally,
performance and computation tradeoffs will be discussed in the framework of
what the user of these estimation techniques is seeking from the spectrum.
Finally, this note will describe a practical application of the theory in the rapid
prototype and implementation of a DTMF tone decoder on the SPROC-1400.
Part 1 of this note will focus on implementation while part 2 will review the
theory of the Goertzel method and other nonparametric methods in use today.

Spectral analysis, also called spectral estimation, encompasses a set of techniques
used to estimate/analyze the spectrum of a signal from incomplete observations,
that is from finite data. The advent of the digital computer and fast techniques for
analyzing the spectral content of a signal (based on the much earlier work of
Gauss, Fourier, and Euler) has lead to widespread use of these techniques in a
variety of disciplines, including geophysics, medicine, telecommunications, and
industrial automation.

Parametric and Nonparametric Spectral Estimation

Spectral analysis by numerical methods remains an inexact science. Over the last
two decades, a proliferation of techniques for estimating the spectrum of a signal
have emerged. These techniques can be classified into two broad categories -
nonparametric (classical) and parametric. This application note will focus the
discussion on nonparametric techniques of digital spectral analysis.

The difference between nonparametric and parametric spectral estimation is
simple. Nonparametric methods assume no underlying model for the signal
(other than the use of Fourier’s general signal representation theorem), while
parametric methods assume statistical models for the signal based on statistical
assumptions made about the signal. Examples of nonparametric spectral

4-87

2
T o
c =
o
= Q
o =
58
7]
<

>
]
2
5
-3
=
3
o

p uonoag

estimation techniques include filter banks and Fast Fourier Transform (FFT)
techniques somehow applied directly to the observed signal data. Linear
Predictive Coding (LPC) based spectral estimation is an example of a parametric
technique.

Filter Bank Methods

In filter bank methods, a parallel arrangement of fixed order IIR or FIR filters are
implemented to provide suitable spectral resolution. The outputs of each of the
filters are fed into square-law devices and then into integrators to obtain a
measure of the energy in each of the spectral regions defined by the filters. This
operation is illustrated in Figure 1.

Input

v

— [\ O 2
—» [e\ (-)2—P— > e

—» o\ (.)z—b— > P,

Figure 1: Filter Bank Power Spectral Estimation

All nonparametric spectral estimators can be thought of and derived in
consideration of passing the signal through a parallel cascade of narrowband
filters (filter bank) and accumulating and measuring output power. The variance
of a spectral estimator formed thus is difficult to describe. Depending upon the
types of filters used to construct the bank, an expression for the statistical
characteristics of this type of estimator can be prohibitive to calculate. Resolution
can more or less be chosen based upon the number of filters and the bandwidth of

4-88

each of the filters. Figures 2 through 9 show simulations created with Matlab. The
listings for all the simulations developed in Matlab and discussed in this
application note appear in Listing 1. Figures 2 through 5 show, more or less, the
variance of the filter bank method with 4th and 8th order Butterworth bandpass
filters, and 16th order Yule-Walker derived filters when the input is white
Gaussian noise with zero mean and unit variance. Figures 6 through 9 show the
resolving power of these same filter banks for a tone of 1336 Hz (commonly used
in telecom applications - - DTMF encoding/decoding specifically) and amplitude
of 10 V found in the same zero mean, unit variance Gaussian white noise
background. It is clear that filter design method and filter order have everything
to do with resolving power.

Implementations on SPROC

The two spectral estimation applications presented below have the advantage
that they are sample (stream) based, unlike FFT based approaches to broadband
spectral estimation, which require all the data be present at the onset of
computation (for this reason, FFT based approaches are often referred to as block
or vector algorithms). In this sense, the implementations presented below are true
real time spectral analysis methods. Specifically, these applications are geared
toward tone detection, for a DTMF application which will be presented at the end
of the note. It often occurs in practice that only a few well defined spectral
features need be observed from the data. Toward this end, the designs which
follow offer computationally attractive alternatives to broadband (look at
everything) spectral estimation.

"
L2
T o
c =
o
23
o =
58
n
<

Second Order Elliptic Based Filter Bank for DTMF Tones

This design of Figure 10 was sketched and realized in less than one hour. This
design fits into less than two GSPs of the 20 MHz part - - SPROC-1400-2 - -leaving
two GSPs free for other functions. There are eight filters, one for each of the DTMF
frequencies used in telecom. Each of the filters is a second order elliptic filter with
four of the frequency responses shown in Figure 11. Code and data resource use

at Q wora 11:cad
were not too severe -- about 225 data locations and 786 code locations were used.

Using the new version of the Schedule program reduces the code resource used
via subroutines by a factor of six to seven for this design (due to the
redundancies). Notable features of the design include a pulse generator used for
the integration time constants (which can easily be adjusted on the fly), a bilinear

4-89

>
©
°
2
Y]
=
[]
3
"

p uol23g

bilinear cell, bil1, used for a unit delay, and sample and hold circuitry used to hold
the spectrum in place while another analysis is being performed. Each of the data
sinks represent a data memory location which a controller could easily read at any
convenient point in time.

Goertzel DFT Cell for Eight Real Frequencies

Filter banks are appropriate in some cases and not in others. It turns out that
when specific resolution must be achieved, it can best be controlled through the
use of a selective Fourier based approach, such as the Goertzel approach. Listing 2
displays the implementation of a Goertzel cell for analysis of up to eight real
frequencies. The cell has one input, the signal, and nine outputs, eight for the
calculated energies at each frequency and one to signal that the analysis is
complete for a given number of samples.

Figure 12 contains a design in which the maximum energy value is chosen and an
index indicating which frequency was chosen is output. A DOS file named
dftcoef.dat is read into the cell at compile time. These are the a coefficients of the
second order IIR filter of Figure 13 (i.e., the pole values) 2*cos(2pk/N). Changing
the frequencies to be analyzed can be accomplished by changing the file before
compile time or by changing the harm vector in memory at or beyond run time.
A microcontroller or microprocessor could easily strobe through a large set of
frequencies to piece together a global view of the spectrum if desired.

The total development effort for the cell was under one week. Developing under
the SPROClab is unique in the sense that it allows developers to debug using the
proven techniques of the analog world (oscilloscope, function generator,
frequency counter, etc.) and/or digital techniques (reading/writing memory
locations, simulating GSPs, register monitoring, etc.).

DTMF Application

Figure 14 contains a layout of a DTMF decoder which took less than one hour to
sketch. Cells preceded by a $ are either user contributed (uploaded to the Star
BBS), unreleased (being tested), or under development (soon to be tested and
released). This design utilizes less than a full 20 MHz SPROC-1400-2. On a 50
MHz part, it is anticipated that multiple channels can effortlessly be decoded.
Notable features of this layout are the use of two Goertzel cells - - one for the

DTMF tones and one to compute second harmonics; a $twist block which

4-90

computes twist and reverse twist according to AT&T specs; $max4 blocks which
compute the max in each tone group and report the energy and the tone index at
the output; $harm2 blocks which pick out the second harmonic from a list of
harmonics given an address of the tone; and a $and5 gate which signals a valid
tone if all inputs are true (logical 1). The data sinks are of length one and can be
readily sampled by a system controller (they are DMA locations). The upper and
lower sinks give the row and column decoded addresses, respectively, while the
middle signals tone valid/invalid.

Summary

The implementations in this note were geared toward narrowband problems
(i.e., tone detection). Algorithms such as the FFT are better suited for broadband
spectral estimation. Proper care should be exercised when utilizing
nonparametric spectral estimation techniques. If possible, it is always better to
know what to look for and where to look in the spectrum for desired information.
If this is known ahead of time, the more efficient techniques presented in this note
may be more applicable and certainly far easier to implement.

(%]
.
T 0o
c =
o ©
= 9
O =
58
%]
<<

4-91

Axaanbaiy
000§ O00Sy O0OOF OOSE O0OE OOST 000 OOsL 0001 00§ O

(gp) mmog mdng

VUMY (S AIE AT IRAPUVE I M-OMX 390 ML g AmPi

Asasnbary
000§ 00S¥ 00Oy OOSE O0OE 00ST 000Z O00S1 000l 00§ O

(gp) mmog wdng

AVERIY (S YUV FAT] *9edpuvg QUOAIIINK JORIO Ty € AL

Section 4:
Applications

Axaanbaz
000§ 00S¥ O00OF O0OSE OOOE O00ST 000Z 00Sl 0001 00§

;wmnsg gsd YIVE JATL] sredpuvg quUOALNING I9RIO T8 ¥ B

Asuanbazj
000§ O00SP O000b OOSE O000E O0ST 000 00§l 0001 00§

— -~

—

AVWRYY QS XUE 290 wedpueg QoA 19pIO PUT ‘T amBig

(p) Pmod ndng

(gp) Pmod ndno

4-92

suon»olddy
‘t uoN2ag

Kousnbexj
0005 O0SP O00F O00SE O000€ O0OST 000C O00ST 0001 00§ O

Aqwunsy Sd YUvE JAL] sSedpURg JAMM-OMA 29pI0 YT 6 amByy
Aousnbazg
000S 00S¥ 000¥ 00S€ OO0 00ST 000Z 0OST 0001 00§ 0

149

1T

Ho1-

Aousnbary
000§ O00SP OO0 0QO0SE O0OE 00ST 00OZ 0OST 0001 006 O

Output Power (dB)

/

T /ot

AWURSH (S XUvd JA ssedpuvg qUomIanng BPIO WS :§ amByy
Aouanbazry

000§ 00Sy 000P O00SE OOOE O00ST 000Z O00ST 0001 00F O

awuRsy (Sd YUvg 3R ssedpueg QUOARTNG O Ry (L amPy

Output Power (dB)

—

euney (IS4 Yovg JATL svedpueg quomanng QIO PUT 9 amBy|

Output Power (dB)

Output Power (dB)

4-93

Section 4:
Applications

Figure 10. Second Order Elliptic Filter Bank

4-94

()

FREQUENCY

Y r e e § % OFF

ECOX = Dmm

EMNAMOXEWM | M

P

E W D M-

Te e T I RN

(iz)

FREQUENCY

(H)

FPREQUENCY

o
Py T e e FOF 7 R %R e e v e e TS T R TR
EC€OX —~"=~Dmm MMMOOAMOEM | mm E WYX —™D2Dmmm AL Ml 0D A O IO | M an

FPREQUENCY Ok

Figure 11. Filter Response Using SPROCil

4-95

v
<5
c =
o
=0
$3
1]
g

H
£

o (212 A
- 2 »
m 44 ne
01 A w 23 e
our |12 {\) 1 N o |48 »e our |11 ™
l:._w = et
::: " pis=10 e |18 o
=) P p
our |0 | o
SOORRDFT TMAXS

Figure 12. Goertzel DFT Cell

p uoN03g

>
hel
T
2
Y
=
[]
3
"

. mJ”
clik k
s R
4+ >

O—e—0

Figure 13. Second Order Goertzel Section

4-96

-

suoijeoljddy
it uonoag

Figure 14. DTMF Decoder

4-97

p wonoag

>
ke
=2
=
2
5
3
o

function y = goertzel (nsamp, nfreq, x)

%

% This Pro-Matlab function implements the real form of the Goertzel
% DFT algorithm.

%

% Input parameters: nsamp - Number of samples on which to run GDFT
% nfreq - Number of discrete frequencies

% X - Vector of samples of size l:nsamp

%

% Function output: y - Vector of PSD estimates of size l:nfreq

%

q = 2*pi/nfreq;

for k=l:nfreq

c(k) = cos(g*(k-1)); % Form cosine vector

end

for k=l:nfreq
c2 = 2*c(k);

y2 = 0.0;
yl = x(1);
for j=2:nsamp
temp = yl; % Save y(n-1)
yl = c2*yl-y2+x(j); % y(n-1) = 2cos(2pik/N)*y(n-2)-y(n-2)+x(n)
y2 = temp; $ Old y(n-1) -> y(n-2)
end
y(k) = c(k)*yl-y2; % X(k) = cos(2pik/N) *y(N) -y (N-1)
y(k) = y(k)*y(k); % Energy spectrum from real part of DFT
end
%
% This Pro-Matlab program analyzes the various PSD estimators and
compares

% them with the true PSD as well as computes MSE between the true PSD and
% each of the estimators.

%
N = 256; % Number of input samples
Pb = 2; % Half of order for Butterworth filter bank method
Pyw = 16; % Filter order for Yule-Walker filter bank method
fs = 9766; % Sampling rate
f = 1336; % Tone frequency
dfb = 10; % Frequency step for Butterworth method
dfyw = 20; % Frequency stop for Yule-Walker method
a = 10; % Amplitude of tone
%

wp = hamming(N)’; Hamming window of size N

4-98

wbt = hamming (2*N-1)’; % Hamming window of size 2N-1;

% Generate tone:

%

t = (0:N-1)/fs;

X = zeros(l,N);

X = a*cos(2*pi*f*t);
%

% Add noise ~N(0,1):
%

rand(‘normal’);
= rand(1,N);
=X + e;

Butterworth or Yule-Walker based bandpass filter bank:

0P dP e X O

$yfb = bfiltbank(N,N,Pb, fs,dfb, x);
yfb = ywfiltbank(N,N, Pyw, fs,dfyw, x) ;

%

% Goertzel DFT

%

yg = goertzel (N,N,x.*wp);
%

% Window data for periodogram method of classical spectral analysis:
%

YP = X.*Wp;

%

% Set up for Blackman-Tukey method:
%

ybt = xcorr(x) .*wbt;

%

% Plot results

%

fscale = 0:(fs/2)/(N/2-1) :fs/2;

fscale2 = 0:(fs/2)/(N-1):fs/2;

Pfb = 10*loglO(abs(yfb) /max(abs(yfb)));

Pg = 10*1logl0(abs(yg) /max (abs(yg))):

Pp = 10*1oglO(((abs(fft(yp)))."2)/max((abs(fft(yp)))."2));

Pbt = 10*1oglO(((abs(fft(ybt)))."2)/max((abs(fft(ybt)))."2));
plot (fscale2,Pfb);

title(‘Figure 9: 16th Order Yule-Walker Bandpass Filter Bank PSD
Estimate’);

4-99

ylabel (‘Output Power (dB)’):

pause;

plot (fscale,Pg(1:N/2));

title(‘Figure 16: Goertzel DFT Spectral Estimate for Tone+Noise
Input’)

xlabel (‘Frequency’) ;

ylabel (‘Output Power (dB)’);

pause;

plot (fscale,Pp(1:N/2));

title(‘Figure 10: Periodogram for Gaussian White Noise Input’);
xlabel (‘Frequency’) ;

ylabel (‘Output Power (dB)‘):

pause;

plot (fscale2,Pbt (1:N));

title(‘Figure 13: Blackman-Tukey Spectral Estimate Tone+Noise Input’);
xlabel (‘Frequency’);

ylabel(‘Output Power (dB)‘):;

81: g pause;
g'g. plot (fscale2,Pfb, fscale,Pg(1:N/2), fscale,Pp(1:N/2),fscale2,Pbt (1:N));
g'i title(‘Figure 19: Pfb (B 4th Order), Pg, Pp, Pbt and True PSD’);
3 i xlabel (‘Frequency’);

ylabel (‘Output Power (dB)’):;

pause;

hold;

truth;

%

% Compute mean squared error estimate average and vs. frequency:

%

mse_fb = mean((Ph’-decimate(Pfb,2))."2)

SEfb = (Ph’-decimate(Pfb,2))."2;

mse_g = mean((Ph’-Pg(1:N/2))."2)

SEg = (Ph’-Pg(1:N/2))."2;

mse_p = mean((Ph’-Pp(1:N/2))."2)

SEp = (Ph’-Pp(1:N/2))."2;

mse_bt = mean((Ph’-decimate(Pbt (1:N),2))."2)

SEbt = (Ph’-decimate(Pbt(1:N),2))."2;

pause;

hold;

%

% Display squared error of PSD estimators over frequency:
%

plot (fscale,SEfb, fscale, SEq, fscale, SEp, fscale, SEbt) ;

4-100

title(‘Figure 22: Error for Pfb (Y-W 16th Order), Pg, Pp, Pbt Vs.
Frequency’) ;
xlabel (‘Frequency’) ;
ylabel (‘Squared Error’);
%
This Pro-Matlab program computes the True PSD of a tone (given by f)
in a white noise background of unit variance.

= 9766;

= 1336;
rand(‘normal’);
e = rand(1,256);
var = std(e) *std(e);
fnorm = f/fs;
c2 = 2*cos(2*pi*fnorm);
Bg = (1.0 -1.0 0.0]);
Ag = [1.0 -c2 1.0];
[H,W] = freqz(Bg,Ag,128);
Ph = 10*loglO((var.*abs (H) .*abs (H) +1) /max (var.*abs (H) .*abs (H))) :
plot (fscale,Ph);
title(‘Figure 17: True Power Spectral Density for 1336 hz Tone + Noise’);
xlabel (‘Frequency’);
ylabel (‘*Power (dB)’);
function y = ywfiltbank (nsamp, nbands, nord, fs, df, x)
%
% Pro-Matlab function to construct Yule-Walker based filter bank and
% estimate the PSD of the input using the filter bank.

%

%

%

N = 256;
fs

f

(2]
M =
T o
c =
o
= 9
QO -
© g
) K

q

%

% Input parameters: nsamp - Number of input samples
%

nbands - Number of spectral bands to build filters for
%

nord - Butterworth bandpass filter order = nord

%

fs - Sample rate of data

%

df - Frequency step

%

X - Vector of input samples of size l:nsamp

%

% Function output:
y - Vector of PSD estimates, size l:nbands

4-101

Bb = zeros(nbands,nord+l);

Ab zeros (nbands,nord+1l); yf = zeros(nbands,nsamp);
= zeros(1l,nbands);
df = df/fs;

[00 00O 1l); % Desired frequency breakpoints
= (0 .511.50}]; % Magnitude at frequency breakpoints
for i=2:nbands-2
fnorm=(i/nbands) ;
F(2) = max((fnorm-3*fndf),0.0);
F(3) = max((fnorm-fndf),0.0);
F(4) = min((fnorm+fndf),1.0);
F(5) = min((fnorm+3*fndf),1.0);
(Bb(i,:),Ab(i,:)] = yulewalk(nord,F,M);
yEf(i,:) = filter(Bb(i,:),Ab(i,:),x);
end
y = sum(((yf./nsamp)."2)"); % Integration process
end
function y = bfiltbank (nsamp, nbands,nord, fs, df, x)
%
% Pro-Matlab function to construct Butterworth based filter bank and
% estimate the PSD of the input using the filter bank.

Y
fn
%
% Design a bank of filters, filter the data, square and accumulate:
%
F
M

b uonoag

>
o
°
=
2
o
3
I3

Input parameters: nsamp - Number of input samples
nbands - Number of spectral bands to build filters for
nord - Butterworth bandpass filter order = 2*nord
fs - Sample rate of data
df - Frequency step
x - Vector of input samples of size l:nsamp

Function output: y - Vector of PSD estimates, size l:nbands

00 O O I O° O P I P P

Bb = zeros(nbands,2*nord+1);
Ab = zeros(nbands,2*nord+l);

yf = zeros(nbands,nsamp); fndf = df/fs;

%

% Design a bank of filters, filter the data, square and accumulate:
%

for i=1l:nbands
fnorm=(i/nbands) ;

4-102

passband = [max((fnorm-fndf),0.0) min((fnorm+fndf),1.0)];
[Bb(i,:),Ab(i,:)] = butter (nord,passband);

yf(i,:) = filter(Bb(i,:),Ab(i,:),x);

end

y = sum((yf."2)"); %

Integration process
end

o
c
°
©
<
[0}

4-103

Listing 2.
/*
Goertzel real DFT cell for eight real frequencies
*x/
asmblock S$goerdft {} (in;reO,rel,re2,re3,red,re5,re6,re’,out)
symbol real8 = 14; //Loop count * 2

symbol length = 226; //Number of samples for
spectral construction

variable zero = 0.0;
variable one = 1.0;

variable scalel = 1.0/226.0; //Scale factor for input
variable integer count = 0; //Outer loop variable
variable harm([8] = “dftcoef.dat”; //File of coefficient data
> variable dftdat(l6]; //Second order delay line data
§_§ variable new = 0.0; //New computation - initialize
§'§~ data areas
g'i variable temp; //Scaled input temporary variable
2" /7
duration 356;
//
begin
//
1db #harm //Set base register to coefficient
store
1df #dftdat //Set frame register to DFT delay
line data
lda new //Initialize?
sta out //Not ready strobe to output
jot frame //1f not initialize continue
computation
lda one //Otherwise intialize
sta new //New transform setup
lda zero //Zero accumulator
1ldd #1 //Set decrement register
1d1 #reals+l //Load loop to zero 16 locations
zloop: sta [F+L) //Zero DFT delay variables
djne zloop
1da #length //Loop for 9766 ks/s operation (226)
sta count //226 samples for all harmonics

4-104

jmp again //All done - ready for lst sample
next time

frame: ldd #2 //Decrement register for double
decrements
1d1 #reals //DFT loop for all harmonics
ldx in //x(n)
mpy scalel //Scale x(n) by 1/226 to avoid
overflow
lda L //Get L register (14)
asr //Divide by 2 = 7 to initialize
base
add B //Add address of coefficient store
1db A //Start at rear and move forward
stmh temp //x(n)/226
loop: 1ldx [B) //2Cos (2Pik/N)
mpy [F+L+1]) //2Cos (2Pik/N) *y (n-1)
lda temp //Take new scaled data sample
sub [F+L] //%x(n)=-y(n-2)
sty [F+L] //Move data y(n-1)->y(n-2)
add MH //%(n)-y(n-2) +2Cos (2Pik/N)
sta [F+L+1) //New y(n-1)
lda B //New coefficient address
sub #1
ldb A
djne loop //Calculate for all harmonics
lda count //Countdown to zero
sub #1
sta count
jgt again //Keep going until all data is
done
1d1 #reals //Reinitialize to coefficient
store end
lda L
asr
add B
1db A
eloop: lda [B] //Begin energy calculations
asr //Cos (2Pik /N)
1dx A //Cos (2Pik /N) ->x register
mpy [F+L+1]) //y(n) *Cos (2Pik/N)
nop
nop
lda MH

4-105

>
]
°
=
o
s
3
o

A BELS

sub
sta
1dx
mpy
lda
sub
1db
stmh
djne
lda
sta
lda
sta
lda
sta
lda
sta
lda
sta
lda
sta
lda
sta
lda
sta
lda
sta
sta
end

[F+L+1)
eloop
[F+1)
re0
[F+3])
rel
[F+5)
re?2
[F+7]
re3
[F+9]
red
[F+11]
reS
[F+13])
re6
[F+15)
rel
zero
new
out

4-106

//y (n) *Cos (2Pik/N) -y (n-1)
//=>y(n)

//y(n) "2
//Decrement coefficient pointer

//y(n)~2=->y(n)
//Do for all eight frequencies
//Store output in each case

//Set up for re-initialization
//Transform complete
//Ready strobe to output again: nop

Adaptive Closed Loop Velocity Control for the D.C.
Motor

by Darren Castle, Northern lllinois University

The focus of this application is the steady state velocity control of both variable
and constant flux D.C. motors, entailing an on-line adaptive control method that
offsets the effects of both nonlinearity due to brush friction and load torque.

In order to compensate for these effects utilizing analog components two
additional controllers are necessary. In order to offset the effects of the brush
friction, minor loop velocity feedback can be included within the closed loop
velocity system. In the main loop, the tachometer signal is fed back and compared
with the input to yield the error signal. In the minor loop, the tachometer signal is
passed through a phase lead network and fed back to the preamp. The idea is to
create a dominant pole zero pair to correct the varying time constant pole and
linearize the steady state constant.! In order to offset the effects of load torque, a
transducer can be utilized to provide a load signal as an additional input to the
system. The load information in conjunction with a controller minimizes the effect
of the load upon the output velocity response.?

%]
2
T o
c =
o
=0
°g
n
<<

An alternative to these methods is model reference adaptive control (MRAQC),
which provides both a linear steady state response and minimizes the load effect
without the use of a torque transducer. The purpose is to force the closed loop
velocity system to follow an ideal reference model consisting of a steady state
constant and a time constant pole. Initially, the controller sends the command
input signal to the motor and to the reference model. The outputs of the motor
and the reference model are fed into the adaptive cell which minimizes the mean
square error function(MSE).2 This action is performed by first passing the motor
tachometer signal through a first order adaptive filter and then subtracting this
result from the reference model signal. This error is passed to Widrow’s LMS
algorithm to update the adaptive filter gain. In this manner the difference
between the adaptive filter output and the reference model will iterate to zero. In
order to force the steady state output of the motor to match the reference model,
the updated adaptive filter gain must be copied to an amp that modifies the
command pulse as it passes on to the motor and into the reference model. In this
manner adjustments are made to the output command signal to compensate for
motor nonlinearites and load torque.

4-107

:p uonoag

pod
©
T
2
o
=
]
2
2]

Although the control scheme appears complex upon review, the signal flow
diagram in Figure 1 shows how easily the SPROClab development system
implements the MRAC system. The pulse cell, PL1, provides the input command
signal switching ten seconds high and low for a sampling frequency of 153 Hz.
The difference amplifiers, DIFFAMP1 and DIFFAMP2, with the voltage reference
cells, VR1 and VR2, provide compensation for the offset of the ADC and the
DAC.The transfer function cell, TF1, represents the reference model containing
the LaPlace domain coefficients of the ideal closed loop velocity system in the file,
mod1.tff. During SPROCbuild, the LaPlace transfer function is automatically
converted to the z domain equivalent. The adaptive cell, DL1, was created to
minimize the MSE function providing adaptive filtering, error creation, and LMS
updating of the adaptive filter gain. The output of DL1 is the filter gain coefficient
and is passed into a multiplier, MULT1, that modifies the input command signal.
The SPROCIlab system has no problem in handling this feedback of the adaptive
gain element.

Real time-testing involves the control of the feedback modular servo system
featuring a 24-volt variable magnetic flux D.C. motor that can be configured to
run in either armature control resembling a shunt wound motor or for field
control resembling a series motor. For this purpose, the motor is configured for
armature control, where the effects of brush friction are more noticeable than field
control. The reference model in the controller is representative of the steady state
and transient parameters established by the minor loop feedback with the phase
lead network. The steady state of the model produces .86667 volts per input volt
to the system. With the tachometer conversion rate of 367.28 RPM per volt, a one
volt input will produce approximately 318 RPM. A comparison of the
uncompensated system and the compensated system for input command signals
up to 2.0 volts versus the output tachometer signal is shown in Figure 2. The
uncompensated system varies as much as 30 RPM from the ideal steady state,
while the compensated system varies at the most 0.5 RPM. A comparison of the
uncompensated system and the compensated system undergoing varying load
for an input of 1.0 volt is shown in Figure 3, depicting output voltage versus load.
The load torque is provided by a magnetic brake with a ten point scale with each
point equal to 20 Nmm of torque. The uncompensated curve deviates upward of
35 RPM from the unloaded position while the compensated curve shows no
deviation at all. This does not mean that the load curve can not deviate from the
unloaded position. It must be remembered that the adaptive filter is steady state
compensation only. A load must remain constant long enough for the adaptive
filter to compensate. This length of time depends upon the time it takes for the
motor transients to clear, 0.250 seconds for this system. To achieve greater control,

4-108

the adaptive filter size must be increased and trained with a random white noise
signal. As the steady state controller only demands 0.1 of a single general signal
processor, the SPROClab system allows room for transient improvement.

REFERENCES:

[1] Modular Servo System MS150, Feedback Instruments Ltd., Crowborough,
Sussex, England.

[2] Kuo, Benjamin C.; “Automatic Control Systems”, 5th Ed., Prentice Hall Inc.,
1987.

[3] Widrow, B.; Stearns, S.; “Adaptive Signal Processing”, Prentice Hall Inc., 1985.

»
e
T o
c =
o =
TF1 = o
o =
2_{yis $ a
<<
spoc=mod1
MULT1
PULSEI MULT
zooe=tzl 3
mark=1530
spece=1530
mlevel=10
slevel=00
Figure 1

4-109

palesuadwodun pue pajesuadwo) ‘ajels Apeais jo uopezueau; ‘Z ainbi4

(T' » 9[e3s) [eub!s puewwod jnduj
12 ST o1 S

go'e

0s'e

- 00°T

0s’1

Section 4:
Applications

00°¢

> Q= + MU OO

O D+ a2+

4-110

suonronddy

t uonsog

induj }§OA 8| 10} WW8l3 Peo Jo uopezjwiuly ‘¢ 8inbiy

(WM-N B2 % 9[e3s) anbJo) peor
T 8 5 Z

I e I A I I R A I I I R R A R)

08'e

S6°8

00°T

> O~ 4 M0 VO

O o+ a2+

4-111

Listing 1. DLMS.SDL

asmblock dlms {%mu} (inO,inl;out)
duration 18;
variable fixed en;
variable fixed wn=1.0;
variable fixed mu=%mu;
begin

LDX inl

MPY wn

NOP

NOP

LDA in0O

SUB MH

STA en

MPY en

NOP

NOP

LDX MH

MPY mu

NOP

NOP

LDA wn

ADD MH

STA wn

STA out

p uonoasg

>
T
T
2
[}
=
]
3
©w

end

4-112

Hands-Free Telephone Convener

by Dan Greenwood

The development of faster and more efficient signal processors has led to more
advanced telecommunication systems. Likewise adaptive filtering techniques
have enhanced telecommunication systems by performing such functions as line
and acoustic echo cancellation. This application note will present a SPROC system
which may be used in parallel with an existing telephone. The convener allows
the user to implement a hands-free telephone system once a call is initialized.

A central problem associated with hands-free telephones is the inherent
instability due to the closed loop path caused by acoustic coupling between the
system speaker and microphone. A traditional solution to this problem is the use
of analog echo suppressors. The echo suppressors are voiced activated switches
which open the closed loop path to prevent instability. One problem with echo
suppression is that the systems are limited to be half-duplex. Therefore, both
individuals may not speak simultaneously. A second disadvantage to echo
suppression is the noticeable click due to the opening and closing of the switches
which usually cannot respond quickly enough to catch the beginnings of speech
utterances.

w
[=
T o
c =
o =
=
o a
n
<

Adaptive filters may be used, however, to implement echo cancellers which
allow full-duplex communication since the echo path is never opened. Ina
conventional hands-free system there are two forms of echo to cancel. Acoustic
echo is caused by the coupling of the speaker output with the system microphone.
Acoustic echo consists of two portions: short and long echo. Short echo is due to
the direct coupling between the speaker and microphone due to reflections from
near surfaces such as a table top. Long echo is due to reverberations of the speaker
output from the room’s walls and objects which are not close to the system.
Typically, long echoes may have a delay in the order of hundreds of milliseconds.
The second form of echo is line echo which is induced by mismatched
impedances between the two connected users. Both forms of echo should to be

ad dencond maiien tha arotanme ctaleil A menrida Aavar all imnravrad o nA

addressed to insure the sysem mauuuy ana ‘puuvnuc OVEer au IMprovea scuna

quality.

4-113

‘p uonoasg

>
T
=
=
Y
=3
o
=
[

Among the functions incorporated into the system will be adaptive lineand
acoustic echo cancellers, speech detectors, and a closed loop gain controller. The
closed loop gain controller will perform such functions as the management
software attenuators in the closed loop path and the update eligibility for each of
the echo cancellers. The two speech detectors will provide the needed information
for the closed loop controller to make a decision as to the current operational
mode of the system, i.e. transmit, receive, double talk, and idle. Figure 1 shows a
block diagram of the complete hands-free convener system. The SPROC’s four
GSP’s may be used in parallel to implement the variety of functions in the
telephone convener system. That is, while certain GSPs are performing echo
cancellation the remaining processors can implement such tasks as speech
detection, power estimates, and software attenuation calculations. The SPROC’s
data flow architecture is ideal for this type of process since no processing power is
required for such random processes as interrupts. The processors can be used
almost entirely for pure signal processing operations. The application note will
include real-time test results, new SPROC cell developments, and implementation
notes.

MIC

)
%

N eessesnsnes,..-..........§

Figure 1. Closed Loop Convener System

4-114

Application of an Adaptive Equalizer Using the
SPROC Development System

by Steve Voepel and Sen Kuo, Northern lllinois University

Abstract

This application demonstrates the ease of real-time development with the
SPROCIlab development tools by way of a common adaptive equalizer which is
necessary in most communication systems. The type of equalizer to be used is
known a decision feedback system. A block diagram is given in Figure 1.

- FIR t /Z\ Decision Device
+

Adaptive Update

Figure 1. Block Diagram of Adaptive Channel Equalizer

4-115

>
o
2
=
2
£
3
w

‘p UOND3g

A typical channel response, which simulates a degraded communications channel
in the form of a low pass filter, can be expressed as:

C(z) =0.3 +0.9z-1 + 0.3z-2

Figure 2 shows the entire adaptive equalizer system. By using the SPROC
development system, the degraded channel and corresponding adaptive inverse
filter, which will be named DFE, can be realized by choosing existing cells in the
SPROC system and developing one new cell. The channel response will be
implemented using the FIR cell and an ASCII file containing the coefficients given
above.

Additive Noise

input Stream + Output

Chonnel Response DFE

Figure 2. Channel Equalizer System

The adaptive cell DFE will be trained using white noise from a noise generator
through one of the two serial input ports of the SPROC. The final system output
can be viewed either using the SPROC’s probe output port (8-bit resolution) or
one of the two serial output ports with 16-bit resolution.

The SPROCdrive interface will allow the channel model to be varied during
testing. This advantage will allow us to view a real-time adaptive response of the
channel equalizer. With the ever increasing demand for fast development time
for products, the SPROClab development system can provide a realistic and
flexible means to achieve this goal.

4-116

Spectral Analysis with Applications on the
SPROC-1400 Family of Signal Processors

Part 2 of 2
by Scott Andrews

Abstract

This second part of a two part application note will review the theory of the
Goertzel method and other nonparametric spectral estimation techniques in use
today.

Topics will include:

* Brief review of statistical estimation theory

e The PSD and the Wiener-Khinchin relations

g
T o
c =
o ®
.= 9
535
w
<

The periodogram spectral estimator

¢ Blackman-Tukey approach to spectral estimation

4-117

Section 5 4
Technical Support I *

STAR Semiconductor offers comprehensive technical training for SPROC signal
processor users. Course include a detailed description of the SPROC architecture,
a review of digital signal processing theory, an in-depth study of SPROClab
hardware/software tools, and “hands-on” applications development workshops
utilizing the entire suite of SPROClab design tools.

Courses run for two days, from 9 AM to 5PM each day. Course notes, binders,
and lunches are provided by STAR Semiconductor. A substantial amount of class
time is spent performing design exercises using the SPROClab development
system (two students per system). Development systems are also available to
students following classes for optional individual work in consultation with the
instructors.

Prerequisites

Students are assumed to have a background in signal processing design and
familiarity with PCs and MS-DOS.

SPROClab Training Course Outline

L STAR Semiconductor
- profile and mission
II. ~ SPROC Technology

- architecture
- software/hardware optimization

III. Theory of Digital Signal Processing
IV. SPROClab Development System

- hardware
- software

V. SPROCIab Applications Examples

-tutorials

(2]
c
T
bl
o
=

jesiuyoa}
16 uoNno3g

VI. Customer Specific Applications

- system requirements
- the SPROC approach

VII. Hardware Design Considerations
- functional description
- timing requirements
Training Seminars

In addition to 2-day training courses, STAR Semiconductor offers half-day
training seminars at various locations around the United States. Contact your
nearest STAR Semiconductor sales office for information regarding times and
locations.

Field Technical Specialists

STAR Field Technical Specialists (FTSs) are available at the locations shown on the
following page. Additional technical support is provided by headquarters
applications who can be reached at

(908) 647-9400

In addition, a world-wide network of STAR Semiconductor representatives and
distributors also provide technical support.

5-2

FTS Locations

1009 Hawthorne Drive

Itasca, IL 60014

Tel: 708-250-9586
25 Independence
Warren, NJ 07059

3350 Scott Boulevard
Suite 24

Santa Clara, CA 95054
Tel: 408-727-7707

17862 17th Street
Suite 207

Tustin, CA 92680
Tel: 714-731-9206

(908) 647-9400

12000 Ford Road
Suite 200

Dallas, TX 75234
Tel: 214-241-3505

6A Damon Mill Sq.
Blvd. Concord, MA 01742
Te:508-371-9240

6115A Oakbrook Pkwy.
Norcross, GA 30093

Tel: 404-263-0320

5
c
2
©
o
%2}

3
e
c
L
O
Q
—

Section 5:
Technical
Support

5-4

Technical Documentation

A SPROClab development system document set is delivered with every
SPROClab development system. The document set includes the SPROClab
Development System User’s Guide, containing the following sections:

Section 1. Getting Familiar with the Development System
Section 2. Starting the Development System

Section 3. Entering Diagrams

Section 4. Defining Filters

Section 5. Defining Transfer Functions

Section 6. Converting a Design

Section 7. Loading, Running, and Debugging a Design
Section 8. Putting it All Together

Section 9. Special Topics

In addition, the document set includes the following manuals:

e SPROCIab Development System Unpacking and Installation Guide
* SPROCcells Function Library Reference Manual

e SPROClink Microprocessor Interface Reference Manual

e SPROCdrive Interface Reference Manual

e SPROCbox Interface Unit Reference Manual

e SPROCboard Evaluation Board Reference Manual

¢ SPROC Programmable Signal Processor Data Sheet

¢ SPROC Description Language Reference Manual

w3
c 2
o C
= £
[SINS]
L Q
[N

Section 6

Quality, Testing,
Packaging/Handling

w

Quality and Reliability Assurance

STAR Semiconductor utilizes a state-of-the-art, CMOS VLSI process technology
in the manufacture of its programmable signal processors. The quality and
reliability of these circuits is assured through the strict adherence to a rigid set of
quality and reliability conformance specifications.

Quality Control of Manufacturing

All silicon processes have been developed to meet specific quality and reliability
goals. During the development process, test vehicles are used to verify that the
targeted reliability goals are achieved. Electromigration, gate oxide integrity, and
process defect inspection are examples of the tests that are conducted during the
process development phase.

Once a process has been developed, sample parts are then subjected to a series of
reliability tests to again confirm that the targeted goals have been achieved. These
tests include life test, thermal stress, moisture resistance, and mechanical stress.
Further testing of electromigration and oxide integrity is also done. Details of
how these tests are performed are included in the Reliability Methods portion of
this section.

6-1

)
I
o0
25
=Q
5%

@3

‘Bunsa] ‘Anjenp

g uonoag

PROCESS

Materials
Parts

'

Manufacturing

'

Process
Control

'

Product
Audit

!

Shipping

'

Customer

QUALITY CONTROL

Incoming Inspection
Supplier Quality Data

Equipment
Environment
Process Material

In Process
Quality Control

Sample Inspection
of Appearance,
Mechanical

and Electrical

Shipment Integrity

Part Return Program
of Defective Parts

METHOD

Lot Sample
Quality Level
Confirmation

Preventive Maintenance
Set Point Monitors
Quality Level
Confirmation

Lot Sample Inspection
Statistical Process Control

Lot Sample

Shipment Sample

Root Cause Analysis
Failure Analysis
Statistical Tracking

Simplified Process Flow Chart and Manufacturing Quality Controls

Manufacturing Process

Silicon Fabrication

Within the silicon fabrication area, process activities are subdivided into work
cells. Each of the work cells has defined quality control activities which include
equipment qualification, preventive maintenance, particle monitors, quality
inspections, and statistical process control.

Equipment Maintenance
Qualitication Routine
Particle
Monitoring
Process
S
Previous | FIRST LEVEL Out of
Cell INTERCONNECT Con?trol
Audit | ‘ Process
Inspection Troubleshooting
Process Guide

Example of a Workcell and its Defined Quality-control Activities

Statistical process control procedures have been implemented throughout
manufacturing to immediately identify potential process problems. Correction of
the root cause of these problems is part of continuous process improvement.

R
I o
o0
3 x
a
=Q
5%
@g

o
c
o8
=
=<
—
1]
]
=
3
(]

(%]
1]
(2]
=
[}
3
D

Package Assembly

The package assembly operation also utilizes the work-cell quality-control
concept. Statistical process control is the predominant tool used. When a process
is “out of control”, a documented procedure is followed to return the process to
control. When a set-up is changed, specified procedures again ensure that the
machine is production worthy and in control prior to releasing it to run
production parts.

“Just-In-Time” Convergence has furnished an opportunity to provide fast
feed-back of quality information. Each cell has a minimum of inventory so that
quality problems are detected quickly and corrected.

Each work cell also has documented procedures on the operation of the
equipment. Operators are trained and certified to these procedures. Maintenance
procedures are also developed and documented for each of the cells and play a
key role in producing high-quality products.

Electrical Test

STAR Semiconductor utilizes two types of testing: parametric testing for
process/device characterization, and functional testing for IC verification. The
former tests the way an IC is fabricated and is design independent while the latter
tests characteristics about the actual design itself, i.e., part functionality. STAR
Semiconductor ICs are subjected to both kinds of testing to make sure that the
design is robust and yielding within the capabilities of the fabrication process,
and that the fabrication process is working properly.

Parametric Test

To measure the process/device characteristics, structures such as individual
transistors, contact strings, or diffusion resistance are used. These structures are
located in the scribe lines on the wafer. Several wafers from each lot are sampled.
If the wafers do not meet the device specifications, the entire lot is rejected.

Functional Test

To measure characteristics about the design itself (IC verification), full functional
testing is performed. There are four major parts to this test: open, short,and I/O

6-4

pin testing; functional testing; I/O leakage current testing; and supply current
testing. Functional testing is usually performed at full device operational
frequencies with the voltage levels adjusted to compensate for maximum
temperature sensitivities.

Electrical testing is performed at both the wafer level and the final packaged part
level. Wafer testing is used to assure overall device reliability while package
testing is designed to detect packaging-induced failures.

In addition, a screen at the wafer test level checks for wafers that do not meet the
“ship limit”. If a wafer has fewer than 25% of the standard number of good die
per wafer, it is scrapped. This procedure prevents potentially marginal die from
being shipped to the customer and the field.

Before a wafer is shipped, a visual inspection is performed. This screening test is
designed to detect gross visual defects that would affect metal or passivation

quality.

Package testing consists of the same functional test as that performed at the wafer
level. In addition, lead planarity and alignment testing is performed on
surface-mount devices. Visual inspection is also performed to check for bent
leads or other gross defects.

Work cell controllers in the test area perform real time statistical process control
functions. Process, parametric, and functional test data are also collected and
forwarded to a global database. The database allows engineers to cross correlate
fabrication data and test results in an integrated environment. The results of the
analysis are used to identify root causes and initiate process improvements.

Each tester is linked to a central process control computer that analyzes the yield
results of every wafer and package as it is tested. The system detects statistically
significant yield variations (that are often too subtle to be recognized by people)
and reports them to the operator along with a knowledge-based rule for action.
The operator uses this information to either restore control of the test process, or
dispose of the deviant material. Thus, the system helps manage the test process to
achieve the highest yields possible.

The system also summarizes the daily out-of-control events and produces reports
that help focus the daily management activity of the engineering teams. This
procedure means a rapid, focused response to statistically significant process
deviations. The tools of this portion of the system include: cross-correlation
matrices, wafer map, and trend analysis.

6-5

lity. Testing.
ackaging
Handling

&
c
L
©
o

D

el
ITo
o 0
3 x
Qo
= Q
53¢
@3

‘Bunsa] ‘Auenp

19 uoN2ag

Shipping

The packing and shipping area also utilizes quality-control processes. All materials that
used in shipping are subjected to testing to ensure the products will arrive at the custome
location with no damage. Before these materials are utilized in the shipping process, the
are evaluated for their ability to prevent ESD and handling damage. Periodic tests are
conducted to verify that the shipping materials and process continue to meet the quality
objective. All shipping documents are automatically generated from the customer’s orde
All information needed to correctly pack and ship the material is included on these
documents. During the packing process, the parts being shipped are verified against the
documents to ensure the correct part is being sent to the customer. Parts are shipped to
arrive at the customer’s site on the requested date of delivery.

Part Return Process

STAR Semiconductor customers are included in the quality and reliability improvement
process. Parts which fail for any reason are returned to STAR Semiconductor for analysi
This analysis, along with information received from yield improvement analysis and
on-going monitors, is used to improve the development, design, and manufacturing
processes.

6-6

Customer

Sales Department
or

Repair Center

\

Parts Returned
From Customers

L/

Failure analysis

Process
’
’
’
'l
’l
Failure Analysis Failure
Corrective Actions Analysis Report
\
\ ..
\ 4 0z 2o
To Customer To Development - 93
Design and 9279 I%
Manufacturing »Ea
Improvement Teams

Part Return Process Flow Diagram

6-7

Buypuey

/Buibexoed

o
c
D
<
—
(1]
»
=
3
Q

[
1]
(2]
=
[}
=
[=2]

Reliability Methods

Definition of Rellability

Reliability is continued performance to specification over time, that is quality
sustained over an arbitrary period.

Field failure collection and analysis does not provide sufficiently rapid feedback
to effectively initiate process reliability improvements. Long-term life results,
however, can be related to field performance using the Arrhenius model. This
model treats mechanisms which are accelerated by temperature, and which obey
a rate equation whose key parameter is activation energy, Ea. Ea may be different
for different failure mechanisms. Activation energy can be determined
experimentally for any given process; the literature reports values for common
failure mechanisms, such as gate oxide breakdown. If an analysis of a STAR
CMOS device identifies a failure mechanism, then standard values for associated
activation energies are assumed in the calculations. The Arrhenius model is used
to derate Long-Term Life test data from 160 degrees Centigrade]unchon to lower

temperatures. The failure rates are expressed in FITS (FITS= Failures/ 10° device
hours).

Process yield and early-life reliability are related, since both depend on low levels
of processing defects. It has been observed historically that as process yields are
improved, process reliability also improves. A fair comparison of failure rates
will demonstrate that a newer design often replaces many circuit components for
a combined substantial improvement in overall system reliability.

The following tables describe what tests are performed for process and product
qualification.

6-8

design specific

TEST SAMPLE
PURPOSE CONDITONS SIZE/ REFERENCE
Rellabllity FAILURE
LIMITS
Long Term Life | To demonstrate the quality 1000 hours, 1291 MIL-STD-
or reliability of devices 150°C, 883C Method
subjected to specified condi- | dynamic 1005.7
tions throughout an operation Test Condition
extended time period A
Moisture To evaluate the resistance of | 1000 hours, 10572 MIL-STD-
Resistance devices to deterioration 85°C, 85% 883C Method
caused by high humidity, humidity, 1004.7
heat, and electrical biases. static bias
Pressure Pot To determine the ability of 240 hours, 50/10
(Autoclave) plastic encapsulated 120°C, 100%
devices to withstand relative
accelerated humidity, humidity, 2
pressure, and temperature atmospheres
absolute
pressure, no
bias
Thermal To determine the resistance | 200 cycles, 116/0 MIL-STD-
Shock of devices exposed to -55°C to 883C Method
extreme temperature +125°C, room 1011.7
changes pressure, no Test Condition
bias B
Quality
Solder Pro- To determine the ability of 1-5 cycles 32/0
cess Resis- devices to withstand a typi- wave solder
tance cal wave solder operation exposure
External Visual | To determine the level of 3-30x visual MIL-STD-
workmanship, damage, and | inspection 883C Method
external defects of the 2009.8
devices
Electrical Test | To determine how well the -Functional: MIL-STD-
devices meet the product design specific 883C Method
specifications throughout a -Parametric: 3014.1
rated temperature range standard shell
-Temperature:

The tests listed in this table are a sample of those performed.

o)
.. &
© %
c o
o r
o >
o =
N
>
(@]

Packaging

Handling

el
I o
o 0
22
=Q
e
@3

‘Bunsa] ‘Anenp

19 uonoas

SAMPLE

SIZE/
TEST PURPOSE CONDITIONS FAILURE REFERENCE
LIMITS
ESD To provide specific test - Room 2/0 at MIL-STD-.
procedures to assure that temperature each point | 883C Method
part performance will notbe | - +/- 1500V to 3015.7
degraded, to an unaccept- 1/0 pin
able level, by exposureto a | - Functional
succession of electrical test
discharges below a
minimum voltage
Latch-up To provide specific test -Supply 2/0 at EIA JEDEC
procedures and acceptance | voltage +/- 4V | each point | Publication 12
criteria to assure that CMOS | - I/O current +/
devices are immune to - 125mA
latch-up <or>
Pad voltage of
9.5V minimum
for a triple-
level-metal
CMOS pro-
cess
Part Qualifica- | To provide specific test - Various: MIL-STD-
tion procedures to determine includes gross 883C Various
potential failure mechanisms | leak, solder- Methods
caused by die-package ability, thermal
interactions. (These tests shock, ESD,
are not required for every structural
device.) analysis,
autoclave,
and others
Margin Check | To provide specific test - Process
procedures to determine skew lot split

potential failure mechanisms

caused by dae;gn.prnnaee

SRLUSTE vy LTS VLS SS

interactions

at gate critical
dimensions

- Functional
test

6-10

Quality and Reliability Monitors

Outgoing Quality Audit

As a final quality check of products, random samples are selected from inventory
and subjected to visual and mechanical tests. These tests verify that the
manufacturing process is in control .

Reliablility Monitoring

To ensure that the manufacturing process is reliable, monitor procedures are
conducted. The monitor is a memory device which has been fabricated in the
qualified and controlled production process. Each month sample memory device
parts are subjected to the tests shown below.

TEST CONDITIONS DURATION REFERENCE
Life 150°C, 7 volts 1000 hrs MIL-STD-883C
Method
1005.7
Thermal -565°Cto +125°C 1000 cycles | MIL-STD-883C
Shock Method
1004.7
HAST 125°C, 2 atm 168 hrs
(Highly
Accelerated
Stress Test) o

ing

If a failure should occur during any of these tests, the part is failure analyzed to
determine the root cause. These data are then used to improve the production
process to prevent potential reliability failures.

Handling

Section 6:
ackar

uahity. Testin

I

6-11

CMOS User Precautions

Handling

CMOS devices are sensitive to static electricity. Parts are shipped in static tubes
and containers. Parts should be left in these tubes and containers until installed
on printed circuit boards. Assembly equipment and work stations need to be
designed to eliminate any static potential from coming into contact with CMOS
parts. Operators need to be static safe before handling CMOS devices.

Packaging Information

STAR Semiconductor’s line of SPROC-1000 series programmable signal
processors are available in pin grid array (PGA), quad flat pack (QFP), and leaded
chip carrier (LCC) packages.

Pin Grid Array Types

The PGA types are available in 132-pin ceramic packages and in 96-, and 132-pin
plastic packages. The ceramic package has a co-fired ceramic design that permits
use in applications where high electrical and high temperature performance are
important considerations. The packages imbedded heat slug (option) assures
greater thermal range without the need for external heat sinking.

o]
c
oL@
3x<¢
FT =
Tk
Qg =2
-3
[{o]
(100-mil pitch) PPGA
CPGA Plastic Pin Grid Array
Ceramic Pin Grid Array (100 mil pitch)

6-12

Quad Flat Pack Types

The QFP types are available in 100-, 144-, and 160-lead plastic packages. The QFP
type is an EIA] standard, high-density, high-lead-count package with gull-wing
lead formation on all four sides. The gull-wing leads with their high pitch permit
greater lead compliance and ease of lead inspection in surface-mount commercial
applications. The low-stress molding compound of the package also assures
greater thermal range without the need for external heat sinking.

PQFP
Plastic Quad Flat Pack
(EIAJ standard, 31.5/25.6 mil pitch)

Leaded Chip Carrier Types

The LCC types are available in 84-lead plastic packages. The LCC type is a JEDEC
standard, J-leaded package with a 0.050 pitch intended for surface-mount
commercial applications. In such applications, this package can be used with
most pick-and-place SMT robots on conventional boards with reflow soldering,
and can also be mounted readily on both sides of the board for increased density.

The package is also available with an internal heat spreader to assure greater
thermal range without the need for external heat sinking or fixtures.

o
c
=)
o7 29
cozE
.Qy_m‘g
= S X

82y s
nEeT
1
(e]

PLCC
Plastic Leaded Chip Carrier
(JEDEC Standard, 50mil pitch)

6-13

bullpuey
Buibeyoed

o
c
o
=
=
—
39
»
=
=
@

w
@
Qe
=
3
o

X3AONI I'ON NId

[
-~
>
z
o
W
o
M)
RS
o
|z
-
o
S o
o
=
>N
o
<
.uoo
[

N\
§
\
\
\
§\§
\
§

070

KIJvI8)
Ov¥Y YH3J0AN

NVH;7
C |

o107 060°

gl8|8|8 g8
A
H H H P,

5000000000 © 66 0|
SR RCRCRG R SRR GRS RR
OOPOOOPOOOO0OO®O
QO® Q9P ¢
DO ® OO
OO O
Qe® ®® i
©0 0 ©06 |

@00
@ee

©®e
0000000
T

P00 OO®

OO
9O
ed®
QOO ®

QOO ®

AR R R KE

6-14

Ceramic Pin Grid Array Materials and Specifications

Standard:

e 99% Alumina co-fired ceramic
* Spot gold

* Low-stress die coat

* Gold-plated pin finish

Options (at additional cost):

¢ Imbedded heat slug

Shipping Containers

Depending upon quantity and lead count, all STAR Semiconductor packages are
shipped in either trays or ESD-protected bags and foam.

Trays and marking are included in all price quotes. All trays are ESD-protected
and desiccant packed.
Sockets and Insertion Tools

Below is a partial list of manufacturers known to offer sockets for STAR
Semiconductor PGA package types:

AMP, Inc. ' 3M Textool Precicontact, Inc.
Harrisburg, PA17105 Austin, TX 835 Wheeler Way
(717) 564-0100 (800) 328-7731 Langhorne, PA 19047

(215) 757-1202

PGA insertion and extraction tools are offered by: o

© G 2o
Micro Electronics Systems Corp. 5 % =
New Milford, CT 0 =z3§
(203) 350-5004 ©zaT

PGA insertion tool part # P/N 166
PGA extraction tool part # P/N 266

This listing does not imply an endorsement by STAR Semiconductor. Each user
must evaluate the particular socket/tool type.

6-15

e
I
o 0
3 x
a
=Q
5%
@ g

Plastic Quad Flat Pack

AR Raanm

Materials and Specifications

Standard:

e Copper alloy or alloy 42 lead frame
* Spotsilver

* Low-stress molding compound

* Solder-plated lead finish

Electrical Characterization:

Lead Count Inductance (nH) Capacitance (pF) Resistance

shortest-longest shortest-longest shortest-longest
100 53-10.8 05-0.8 210-260
160 15.1 - 20.5 0.6-0.8 270-280
Notes:

A. The inductance value is the measured self-inductance of a single package lead without
mutual coupling effects

B. The bondwires are included in the measured inductance values.
C. The bondwires are included in the measured resistance values.

TOS QIT Hivivuaou HYQSWITU 1DSIS&ive VaIWT

D. The capacitance value is the measured mutual capacitance between two adjacent
leads and includes bondwires and pads.

E. The capacitance measurement is for the die-free package and does not include
bond wires.

‘Bunsa] ‘Anjend
19 UoI23g

EIAJ PQFP BODY SIZES

Shipping Trays 28mm "
 ee— mm
PIN COUNT QrTy . i
£
100 30,15 E §I
160 30, 15 &
100
. . , (0.65)
Trays and marking are included in all 160
price quotes. All trays are EDS-
protected and desiccant packed. (0.65)
Leaded Chip Carrier
:Pin 1 Identification

LOGO
NNNN-NNNN
YYMMDD

AAAAAAA

PLCC Materials and Specifications
Standard:

e Stamped lead frame

e Olin 151 copper alloy

* Spot silver at wirecbonds
¢ Solder-lead finish

6-17

Buipuey
/Buibexyoed

(9]
c
B
<
—
[+
7]
=
3
Q

[
@
4
=
3
@

Electrical Characterization:

Lead Count Inductance (nH) Capacitance (pF) Resistance

shortest-longest shortest-longest shortest-longest
84 7.6-11.8 1.4-15 93 - 100
Notes:

A. The range of values results from variations in trace length from the shortest to the
longest leads.

B. The inductance value is the measured self-inductance of a single package lead without
mutual coupling effects

C. The bondwires are included in the measured inductance values.

D. The bondwires are included in the measured resistance values.

E. The capacitance value is the measured mutual capacitance between two adjacent
leads and includes bondwires and pads.

Operating and Handling Considerations

This section summarizes important operating recommendations and precautions
which should be followed in the interest of maintaining the high standards of
performance of solid state devices.

The ratings included in the data bulletins are based on the Absolute Maximum
Rating System, which is defined by the following industry Standard (JEDEC)
statement:

Absolute-Maximum Ratings are limiting values of operating and
environmental conditions applicable to any electron device of a specified type
as defined by its published data, and should not be exceeded under the worst

probable condition.

The device manufacturer chooses these values to provide acceptable
serviceability of the device, taking no responsibility for equipment variations,
environmental variations, and the effects of changes in operating conditions
due to variations in device characteristics.

6-18

The equipment manufacturer should design so that initially and throughout
life no absolute-maximum value for the intended service is exceeded with
any device under the worst probable operating conditions with respect to
supply voltage variation, equipment component variation, equipment
control adjustment, load variation, signal variation, environmental
conditions, and variations in device characteristics.

It is recommended that equipment manufacturers consult STAR
Semiconductor whenever device applications involve unusual electrical,
mechanical, or environmental operating conditions.

General Considerations

The design flexibility provided by these devices makes possible their use in a
broad range of applications and under many different operating conditions.
When incorporating these devices in equipment, therefore, designers should
anticipate the rare possibility of device failure and make certain that no safety
hazard would result from such an occurrence.

The small size of most solid state products provides obvious advantages to the
designers of electronic equipment. However, it should be recognized that these
compact devices usually provide only relatively small insulation area between
adjacent leads. When these devices are used in moist or contaminated
atmospheres, therefore, supplemental protection must be provided to prevent the
development of electrical conductive paths across the relatively small insulating
surfaces.

Devices should not be connected into or disconnected from circuits with the
power on because high transient voltages may cause permanent damage to the
devices.

Testing Precautions

o
.. .E
© B
c o
(ol od
5 >
o =
N ©
o]
o

In common with many electronic components, solid-state devices should be
operated and tested in circuits which have reasonable values of current limiting
resistance, or other forms of effective current overload protection. Failure to
observe these precautions can cause excessive internal heating of the device
resulting in destruction and/or possible shattering of the enclosure.

6-19

Packaging

Handling

Bunpuey
/Buibeyoeq

o
c
S

<
-
1
e
z

@

7]
@
e
z
3
o

Mounting

Integrated circuits are normally supplied with lead-tin plated leads to facilitate
soldering into circuit boards. In those applications requiring welding of the device
leads, rather than soldering, the devices may be obtained with gold or nickel plated
Kovar* leads**. It should be recognized that this type of plating will not provide
complete protection against lead corrosion in the presence of high humidity and
mechanical stress.

*Trade Name: Westinghouse Corp.
**MIL-M-38510A, paragraph 3.5.6.1(a), lead material

The aluminum-foil-lined cardboard “sandwich pack” employed for static
protection of the flat-pack also provides some additional protection against lead
corrosion, and it is recommended that the devices be stored in this package until
used.

When integrated circuits are welded onto printed circuit boards or equipment, the
presence of moisture between the closely spaced terminals can result in conductive
paths that may impair device performance in high-impedance applications. It is
therefore recommended that conformal coatings or potting be provided as an
added measure of protection against moisture penetration.

In any method of mounting integrated circuits which involves bending or forming
of the device leads, it is extremely important that the lead be supported and
clamped between the bend and the package seal, and that bending be done with
care to avoid damage to lead plating. In no case should the radius of the bend be
less than the diameter of the lead, or in the case of rectangular leads, less than the
lead thickness. It is also extremely important that the ends of the bent leads be
straight to assure proper insertion through the holes in the printed-circuit board.

Handling

All CMOS gate inputs have a gate protection network. All outputs have diode
protection provided by inherent p-n junction diodes. These protective elements at
input and output interfaces protect CMOS devices from gate-oxide failure in
handling environments where static discharge is not excessive. In low-temperature,
low-humidity environments, improper handling may result in device damage.

6-20

Unused Inputs

All unused input leads must be connected to either VSS or VDD, whichever is
appropriate for the logic circuit involved. A floating input on a high-current type
not only can result in faulty logic operation, but can cause the maximum allowable
power dissipation to be exceeded and may result in damage to the device. Inputs to
these types, which are mounted on printed-circuit boards that may temporarily
become unterminated, should have a pull-up resistor to VSS or VDD. A useful
range of values for such resistors is from 10 kilohms to 1 megohm.

Input Signals

Signals shall not be applied to the inputs while the device power supply is off
unless the input current is limited to a steady state value of less than 10
milliamperes. Input currents of less than 10 milliamperes prevent device damage;
however, proper operation may be impaired as a result of current flow through the
structural diode junction.

Output Short Circuits

Shorting of outputs to VSS or VDD can damage many of the higher-output-current
CMOS types. In general, these types can all be safely shorted for supplies up to 5
volts, but will be damaged (depending on type) at higher power-supply voltages.
For cases in which a short-circuit load, such as the base of a p-n-p or an n-p-n
transistor, is directly driven, the device output characteristics given in the
published data should be consulted to determine the requirements for safe
operation.

o
c 2
o=
~ ©
x C
2z
a

6-21

Sttt Semntecriiby teos 2
IR SR Stggraast P oxser Sesdittent

Section 7
Supplementary Information

w

Catalogs and Brochures

STAR Semiconductor provides a series of introductory literature describing the
company mission, SPROC technology, the SPROClab development environment
and applications suggestions. This information can be obtained by contacting the
STAR sales office in your area or by calling STAR Semiconductor at

(908) 647-9400

Domestic Sales Offices:

ALABAMA S.C. Cubed Semtronics Assoc., Inc.
68 Long Court 3741 NW 55th St.
Novus Group, Inc. Suite 2C Ft. Lauderdale, FL
2905 Westcorp Blvd. Thousand Oaks, CA91360 33309
Suite 120 (805) 496-7307 (305) 731-2484
Huntsville, AL 35805 FAX: (805) 495-3601
(205) 534-0044 GEORGIA
FAX: (205)534-0186 S.C. Cubed
5060 Shoreham P1. Novus Group, Inc.
CALIFORNIA Suite 200 6115-A Oakbrook Pkwy
San Diego, CA 92122 Norcross, GA 30093
Norcomp (619) 458-5808 (404) 263-0320
3350 Scott Blvd. FAX: (619) 458-5823 FAX: (404) 263-8946
Suite 24
Santa Clara, CA 95054 FLORIDA ILLINOI
(408) 727-7707
FAX: (408 986-1947 Semtronics Assoc., Inc. Beta Technology, Inc.
657 Maintland Ave. 1009 Hawthorn Dr.
S.C. Cubed Altamonte Springs, FL 32701 Itasca, IL 60143
17862 17th Str. (407) 831-8233 (708) 250-9586
Suite 207 FAX: (407)831-2844 FAX: (708) 250-9592

Tustin, CA 92680

(714) 731-9206
FAX: (714) 731-7801

Semtronics Assoc., Inc.
1467 S. Missouri Ave.
Clearwater, FL 34616
(813) 461-4675

MARYLAND

Micro Comp, Inc.

1421 C ¢
1421 S. Canton Ave.

Baltimore, MD 21227
(301) 644-5700
FAX: (301) 644-5707

5
2
)
S
3
=4
z
3

Aieyuawaiddng

:/ uonoag

MASSACHUSETTS

STAR Semiconductor Corp.

6A Damon Mill Square
Concord, MA 01742
(508) 371-9240

Mill Bern Assoc.

2 Mack Rd.
Woburn, MA 01801
(617) 932-3311

FAX: (617) 932-0511

NEW YORK

Parallax

734 Walt Whitman Rd.
Melville NY 11747
(516) 351-1000

FAX: (516) 351-1606

NORTH CAROLINA
Novus Group, Inc.

102L Commonwealth Ct
Cary, NC 27511

(919) 460-7771
FAX: (919) 460-5703

OHIO

Bear Marketing, Inc.

240 W. Elmwood, Ste. 1012

Dayton, OH 45459
(513) 436-2061
FAX: (513) 436-9137

Bear Marketing, Inc.

~ AN
P.O. Box 427

3554 Brecksville Rd.

Richfield, OH 44286-0427

(216) 659-3131
FAX: (216) 659-4823

7-2

OKLAHOMA

Orion Assoc.

7966 E. 41st, Ste. 7E
Tulsa, OK 74145
(918) 665-3562

FAX: (918) 665-3585

OREGON

Thorson Company NW
9600 S.W. Oak St.

Suite 320

Portland, OR 97223-6586
(503) 293-9001

FAX: (503) 293-9007

PENNSYLVANIA

Bear Marketing, Inc.
4284 Route 8, Ste. 211
Allison Park, PA 15101
(412) 492-1150

FAX: (412) 492-1155

Delta Technical Sales, Inc

122 N. York Rd., Ste. 9
Hatboro, PA 19040
(215) 957-0600

FAX: (215) 957-0920

TEXAS

Orion Assoc.

12000 Ford Rd.
Suite 200

Dallas, TX 75234
(214) 241-3505

FAX: (214) 241-3503

Orion Assoc.

9430 Research Blvd.
Echelon 1V, Ste. 400
Austin, TX 78759-6535
(512) 343-4532

FAX: (512) 343-4534

Orion Assoc.

4800 Sugar Grove Blvd.
Suite 290

Stafford, TX 77477
(713) 240-6767

FAX: (713) 240-1329

WASHINGTON

Thorson Company NW
12340 NE 8th St.
Bellevue, WA 98005
(206) 455-9180

FAX: (206) 455-9185

WISCONSIN

Beta Technology, Inc.
9401 W. Beloit Rd.
Suite 409

Milwaukee, WI 53227
(414) 543-6609

FAX: (414) 543-9288

CANADA

Electro Source, Inc.
230 Galaxy Blvd.
Rexdale, Ontario
M9W 5RS8

(416) 675-4490
FAX: (416) 675-6871

Electro Source, Inc.
Suite 420

Pointe Claire, Quebec
HO9R 452

(514) 630-7486

FAX: (514) 630-7421

Electro Source, Inc.
3665 Kingsway
Suite 300

Van Couver, B.C.
V5R 5W2

(604) 435-8066
FAX: (604) 435-8181

International Sales Offices:

ENGLAND

Micro Call LTD

17 Thame Park Rd.
Thame, Oxfordshire
0X9 3XD

England

(011) 44-844-261919
FAX: (011) 44-844-261683

FRANCE

REPTRONICsa

1 bis, rue Marcel Paul
Batement A

Z.1. de la Bonde 91300
Massey, France

(011) 33-1-601 39300

GERMANY

Metronik
Leonhardsweg 2

8025 Unterhaching
Germany

(011) 49-89 6110848

FAX: (011) 49-89 6112246
FAX: (011) 49-89 6116468

HONG KONG

EXCEL ASSOC., LTD.
Unit No. 2520-2525
Tower 1

Metroplaza, Hing Fong Rd

Kwai Fong, N.T.
(011) 852-418-0909

FAX: (011) 33-1-601 39118 FAX: (011) 852-418 1600

Electro Source, Inc.
340 March Rd.
Suite 503

Kanata, Ontario
K2K 2E4

(613) 592-3214

FAX: (613) 592-4256

IRELAND

Memec (Ireland) LTD.

Innovation Centre

Enterprise Hse.

Plassey Technological
Park

Limerick, Ireland

(011) 353-61 330742-5

FAX: (011) 353-61 331888

ISRAEL

Aviv Electronics

5 Har’arad St.

P.O. Box 24190

Tel-Aviv 61241

Israel

(011) 972-3-544 7202
FAX: (011) 972-3-544 7650

7-3

>
e
~ T
c o
S £
° L
0 a
na
3
n

c
o
T
g
=
2
£

3
2
)
3
3
o
=
o
3

Aseyuawsiddng

:/ uon2asg

Distributed by:

Marshall Industries locations throughout the United States and Canada.

Corporate Headquarters - 9320 Telstar Ave.

WESTERN REGION

Los Angeles

26637 W. Agoura Rd.
Calabasas, CA 91302
(818) 878-7000

SOUTHWEST REGION

Irvine

One Morgan
Irvine, CA 92718
(714) 458-5301

NORTHWEST REGION

Sacramento

3039 Kilgore Ave., #140
Rancho Cordova, CA 95670
(916) 635-9700

Portland

9705 S.W. Gemini Dr.
Beaverton, OR 97005
(503) 644-5050

CENTRAL REGION

3520 Park Center Dr.
Dayton, OH 45414
(513) 898-4480

El Monte, CA 91731

(818) 307-6000

Denver

12351 North Grant
Thornton, CO 80241
(303) 451-8383

San Diego

10105 Carroll Canyon Rd.

San Diego, CA 92131
(619) 578-9600

Seattle

11715 N. Creek Pkwy:. S.
Ste. 112

Bothell, WA 98011
(206) 486-5747

Cleveland
30700 Bainbridge Rd.,
Unit A

Solon, OH 44139
(216) 248-1788

Salt Lake Cit

2355 S. 1070 West, Ste. D
Salt Lake City, UT 84119
(801) 973-2288

Phoenix

9831 S. 51st St.

Ste. C107-109
Phoenix, AZ 85044
(602) 496-0290

San Francisco

336 Los Coches St.
Milpitas, CA 95035
(408) 942-4600

401 Parkway View Dr.
Pittsburgh, PA 15205
(412) 788-0441

Kansas City

10413 W. 84th Terrace
Pine Ridge Business Park
Lenexa, KS 66214

(913) 492-3121

MIDWEST REGION

Minneapolis

3955 Annapolis Lane
Plymouth, MN 55447
(612) 559-2211

Indianapolis

6990 Corporate Dr.
Indianapolis, IN 46278
(317) 297-0483

TEXAS REGION

Dallas

2045 Chenault St.
Carrollton, TX 75006
(214) 233-5200

FLORIDA REGION

Orlando

380 S. Northlake Blvd.

Ste. 1024

Altamonte Springs, FL. 32701
(407) 767- 8585

EASTERN REGION

Boston

33 Upton Dr.
Wilmington, MA 01887
(508) 658-0810

St. Louis

3377 Bollenberg Dr.
Bridgeton, MO 63044
(314) 2914650

Chicago

50 E. Commerce Dr., Unit 1
Schaumburg, IL 60173
(708) 490-0155

Michigan
31067 Schoolcraft

Livonia, MI 48150
(313) 525-5820

Houston

7250 Langtry
Houston, TX 77040
(713) 895-9200

Ft. Lauderdale

2700 W. Cypress Creek Rd.
Ste. D114

Ft. Lauderdale, FL 33309
(305) 977-4880

Connecticut

20 Sterling Dr.

Barnes Industrial Park, N.
P.O. Box 200

Wallingford, CT 06492-0200
(203) 265-3822

Milwaukee

Crossroads Corporate Ctr. 1
20900 Swenson Dr.,

Ste. 150

Waukesha, WI 53186

(414) 797-8400

Austin

8504 Cross Park Dr.
Austin, TX 78754
(512) 837-1991

Tampa

2840 Scherer Dr., Ste. 410
St. Petersburg, FL 33716
(813) 573-1399

Binghamton

100 Marshall Dr.
Endicott, NY 13760
(607) 785-2345

7-5

>
z
~ T
c 0
o E
o2
o a
0 Qa
3
0]

c
j
©
£
=
L
£

3
)
S
3
2
£
3

Aieyuawaiddng

1/ Uonoag

Rochester

1250 Scottsville Rd.
Rochester, NY 14624
(716) 235-7620

MID-ATLANTIC REGION

Long Island

95 Oser Ave.

Hauppage, LI, NY 11788
(516) 273-2053

North New Jersey

101 Fairfield Rd.
Fairfield, NJ 07006
(201) 8820320

SOUTHEASTERN REGION

Raleigh

5224 Greens Dairy Rd.
Raleigh, NC 27604
(919) 878-9882

Toronto

4 Paget Rd., Units 10 & 11
Building 1112

Brampton, Ontario L67 5G3
(416) 458-8046

Philadelphi

158 Gaither Dr.
Mt. Laurel, NJ 08054
(609) 234-9100

Atlanta

5300 Oakbrook Parkway,
Ste. 140

Norcross, GA 30093-9990
(404) 923-5750

Montreal

148 Brunswick Blvd.

Pointe Claire, Quebec H9R 5P9

(514) 694-8142

Maryland

2221 Broadbirch Dr.
Silver Spring, MD 20904
(301) 622-1118

Huntsville

3313 Memorial Parkway S.
Huntsville, AL 35801
(205) 881-9235

QArTWWADRD
SQUrIVWAR

m
L
(@)
m
<

()]
m
>
[9)
2
m
m
S

m
<

BEFORE OPENING THIS PACKAGE, you should carefully read all the terms
and conditions of the following software license agreement. Opening this
package constitutes your acceptance of these terms and conditions. If you do
not agree to these terms and conditions, you should promptly return the
unopened package to STAR Semiconductor Corp. (“STAR”), and your money
will be refunded.

License Grant

In consideration of payment of the applicable license fee, STAR hereby grants to
you a non-exclusive, non-transferable license (a) to use the enclosed software
provided by STAR in machine-readable, object-code form and the related
documentation (the “Software”) on a single CPU and solely for your own internal
use and (b) to use the programmation files generated by the Software only on DSP
chips supplied by STAR or its authorized representatives or dealers. You may not
reverse engineer, decompile, disassemble or modify, or make any copies of, the
Software. The rights and license granted hereunder are restricted solely and
exclusively to you and may not in any way, directly or indirectly, be licensed,
assigned, sublicensed, leased or otherwise transferred by you without the prior
written consent of STAR. STAR may terminate this license by written notice to
you in the event you fail to comply with the terms of this Agreement.

Ownership

Ownership of the Software, and of any copyright, patent, trade secret or other
intellectual and proprietary rights therein, are and remain in the future solely and
exclusively in STAR and/or its licensors.

Limited Warranty

STAR warrants that the diskette(s) or other media on which the Software is
furnished to be free from defects in material and workmanship under normal use
for a period of ninety (90) days from date of shipment to you. Subject to the
foregoing, the Software is licensed “AS IS” without any warranty or
representation, and without any support or right to any corrections, bug fixes,

maintenance, modifications, enhancements, improvements or extensions, now or

7-7

>
&
~
c o
S E
o 2
o a
w a
3
(%]

c
o
£
=
L2
£

5
=4
[o}
S
3
2
s
3

Areyuawaiddng

:/ uonoasg

in the future. STAR does not warrant or represent that the Software will meet
your requirements or that the operation of the Software will be uninterrupted or
error free. Should the Software prove defective, STAR has no obligation or
responsibility whatsoever. Nevertheless, in the event that STAR does provide
assistance to any user of the Software, all of the limitations with respect to
warranties and remedies shall apply to any assistance so rendered. The warranty
in the first sentence of this paragraph is in lieu of all other warranties, express
or implied, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

Limitation of Liability

In no event shall STAR be liable to you or anyone else for any liability, loss or
damage including, without limitation, indirect, incidental, special, punitive or
consequential damages of any kind, or loss of use or other economic loss, even if
STAR has been advised of the possibility of such damages. You agree that you
will bear the entire risk of using the software and that you will indemnify, defend
and hold STAR harmless against any claims arising out of your use of the
software. Notwithstanding the foregoing, in the event STAR is determined to be
liable for damages with respect to the software, in no event shall the amount of
damages exceed the amount of the license fee paid therefor.

STAR Terms and Conditions

Your licensing of the Software from STAR, and your purchases of any products
from STAR, shall be governed by STAR'’s standard terms and conditions.

General

This Agreement may not be modified or waived, in whole or in part, except in
writing, executed by authorized representatives of both parties. This Agreement
shall be governed by the internal, domestic laws of the State of New Jersey and
shall inure to the benefit of STAR, its successors and assigns. This Agreement is
the sole and exclusive statement of the Agreement between us which supersedes
any proposal or prior agreement or understanding, oral or written, and any other
communications relating to the subject matter of this Agreement.

STAR Semiconductor Corp.
25 Independence Boulevard
Warren, NJ 07059

Index

A

ACCESS POTL coovererrinrnsinsriensseesenesesessssens 2-11, 3-80, 3-87, 3-88, 3-89, 3-94, 3-104, 4-34
1603 01 1ol (o) SRR et a s sea b e Resren 3-97
€CADIE ... 24, 3-80, 3-89, 3-104, 3-105

APPHCAtION NOLEScvervreinceiiiiieiiintcs et sessessa e sessssasssssessssssersreassnes 4-1

architecture, see central memory architecture
assembly language, see SPROC description language

auxiliary power cable ... 2-3, 3-81, 3-104, 3-105

B

block diagramscccevceveeierinnens 1-1, 3-83, 3-84, 3-108, 3-122, 3-123, 4-115, 4-117

DIOCK fil@ ..ottt esan s 3-125, 3-126, 3-129

see also configuration file

bulletin BOArd ... s snasassees 1-15

Cc

CAPLUTE fIl€ .. oeeeiei ettt sttt be e sna e 3-129

CAptUring @ AeSIZN.....c.oveveeeteeretctcttt ettt saenaees 3-108, 3-120

catalogs and BroChUres ...t sessssnsnes 7-1

CIL COAE DIOCK.......cueerenreereereerecnenesereeressaesessnssaessessasssessssssessessasssesssssassssssasns 3-108, 3-130

cell library, see SPROCcells function library

central memory architecture 1-1, 1-3, 1-6 thru 1-7, 1-9, 1-11 thru 1-12,
2-10, 2-11, 3-2, 3-3, 3-75, 3-129, 4-1, 4-17, 4-67, 4-70, 4-75, 4-83, 5-1

central MEMOTY UNQtoovevereieniieeeiteeteee st s 14 thru 1-6, 2-11, 3-3, 34

ChIP NAMINE ..ottt ettt s st tes 2-9,3-70

CMA, see central memory architecture

CMU, see central memory unit

CONfIGUTAtION fil@ c.u.vvrvrrrreeee ettt 3-122, 3-123, 3-124, 3-125

CONVETSION PIOCESS ..u.vvvvversesrerrssesesesnessssssssesssssssssssssssssasns 3-75, 3-122 thru 3-133, 4-67
see also SPROCbuild utility

79

D

data flow managers (DFM)......... 1-4, 1-6, 4-40 thru 4-41, 4-43, 4-68, 4-70, 4-73, 4-75
debugging ... 1-11, 2-1, 2-5, 2-8 thru 2-9, 2-11, 3-75,
3-76, 3-77, 3-79, 3-87, 3-127, 3-129
see also SPROCdrive interface
development system, see SPROClab development system

DRAFT ...ttt ettt eseses s bes st sestese st ensssesssssnsssanssssnsessnsesees 3-83, 3-122
E
electrostatic discharge (ESD)ccooveuvueinirernrererennseessennesennssesessessens 6-6, 6-10, 6-15

embedded microprocessor operating mode, see slave mode
evaluation board, see SPROCboard evaluation board

F
field technical SPeCialistscc...cuvurmririniiiciscsinesississse s sssessssssssss s sssassnns 1-13
IETS..c.o vttt 3-76, 3-112, 4-45 thru 4-48, 4-50, 4-54,

4-56-59, 4-62, 4-67-72, 4-75-76, 4-83, 4-87-89, 4-107-108, 4-115, 4-117-118
see also SPROCAil filter design tool
filter data file........cccouerererercrccecnnnne. 3-78 thru 3-79, 3-108, 3-121, 3-122, 3-123, 3-124
function library, see SPROCCcells function library
G
general signal processor (GSP)................. 14 thru 1-7, 2-9 thru 2-12, 4-1, 4-17, 4-21,
4-34-35, 4-41,4-58-59, 4-62, 4-70, 4-82, 4-89-90, 4-116

guide to products, see product index

H

hardware, see development system hardware

7-10

HOOMIS. .. veueireirreerteternerreee e saesseesessessessesssssessensssssessessassessassessessessessansansessessassessese 3-78, 3-108
INEETFACE CADIES......oovieeeiieetiiecieitrienecreesaeesreesssseesssesssasessessnsesssasassassssassnns 3-80 thru 3-81
INEETTACE CONMECLOTvveeiereeiierinitcecterseessaeessseeessessssesssnesssesssaessssesssnessssassnsssssssssasss 3-99

interface unit, see SPROCbox interface unit

L

library, see SPROCcells function library

10 fIl€ covoeeeeeniirttt s saenas 3-77,3-78, 3-122

loading and debugging tool, see SPROCdrive interface

OG fIl@.coueerretitttc et e st asa e s e st ann 3-128

M

MaKELOAA ..ottt s b s naees 3-123, 3-132
see also SPROCbuild utility

MaKESDL ... s 3-123,3-132
see also SPROCbuild utility

IMNASEET TNOAE ..eevueerieeenreieeecrirrreeresreeeesssessessesessesssessessaesssssssssssssssass 3-12 thru 3-35, 3-96

MNEMOTY MAPPING oevvvrrvrrerrcincisessisieseesesesensessssssssesssssssessasas 3-79, 3-125, 3-126, 4-38

microprocessor interface, see SPROClink microprocessor interface

o)

operating and handling cONSIAErationscoouevsnesesersesenseserssssissisensssssssenssnans 6-18
OrCAD graphical design software, see SPROCview graphical design interface

P
packaging and socket infOrmationueeeneeineinennennsssenescssiscsinsnsenens 6-12
leaded Chip CaTTIET tYPeS......ouvcivreiiiriestsstsrstsss st sss s ss s sasssssnen 6-13
materials and Specifications..........c.ccveviveinensncncnsennesssessisncnsinenes 6-15 thru 6-17
PiN grid aITay tYPeS c..coveeiirreeerctsi et ssssst s anes 6-12
quad flat PACK tYPES.....ccurimiiriierinisiss st st ansss s s ssssses 6-13
socket and INSETHON tOOLSc.cveuerreieinesisissisinsss et sssaans 6-15

7-11

P (cont’d)

parallel port.........ccoeueereninniriecrennnn 3-13 thru 3-35, 3-96, 3-97, 3-125, 4-33 thru 3-34,
4-37-39, 4-44, 4-73, 4-75
parallel POrt CONNECLOT ..ottt sasssssss s ansnaes 3-97
PC CONfIGUIAION. ...ttt st sas s ssass s ses 3-103
POWET CADIES......ooctetrettttt s as bt sssanssseses 3-81
POWET COMMNECLOTSvucuvrerrerrrreteriasesesistnnsssss st sssss st sn s es st ss s ses e sssssasasesssssassses 3-89
POWET SUPPLY Uittt e st ssasaenss 3-80
PTOAUCE INAEX ...ttt bbb sassssb b ssssasnses 2-1
Q
quad flat pack (QFP)oveemrerieirnrcetci s ennns 6-12 thru 6-13
QUALLY CONLTOL ..ottt sass enes 6-1
MANUfACUTING PTOCESSccurrvirrerrerinsiinsiseisctsssse s s st essssasssesse 6-3
MONIEOTING....cuerertirenresst st s e s sa s bbbt babes 6-11
packing and ShIPPING ...ttt 6-6
PATt TELUIT PIOCESS ...cuveuiirtrtsiserenniniietesse et sessssssssse st s sesessssesssssesssssssssasasssessassasss 6-6
quAlity QUdit.....ccooveeeircrte s 6-11
R
reliability assurance
process and product qualification testscccceerevneeicnriereninnnnn 6-1, 6-3-5, 6-8
reliability MONItOING......cccvvvurveriritciitc s ssass s 6-11
S
SANES OffiCES ...ovvrtertete s b 7-1
AOMESHIC .oocvrrererrrtrtsis s s s st sra R 7-1
INtErNAtioNAl.....cucveeiieic b are e 7-3

SDI, see SPROCdrive interface
SDL, see SPROC description language

SECUTILY KEY vttt s s snass s 3-81, 3-102
serial input portscccvvevineiircnnnee 3-36 thru 3-51, 4-40-41, 4-43, 4-48, 4-73, 4-118
Serial OULPUL POTEScuvuvecereiici e sseisesscnsenes 3-36 thru 3-51, 4-43, 4-61

simulator, see SPROCsim simulator

7-12

S (cont’d)

slave mode.........coouvviineinrincinniiinciciennin. 3-12 thru 3-35, 3-96, 4-33-35, 4-38-40, 4-44
SMI, see SPROClink microprocessor interface
software, see development system software

SPROC description languagecccoceeveecuennen. 3-108, 3-122, 3-123, 3-130 thru 3-136

SPROC-1000 series programmable signal ProCeSSOTc..cewuieumussrmsessesssrssessessosss 2-2

SPROC-1400 family.........ccvuuiiiiciriineieininsisese st sssssssessss e ssesseses 2-11, 3-1
architecture, see central memory architecture

central MEMOTY URitcovvevevenrnvererrrrenernnens 1-4 thru 1-6, 2-11, 3-3, 34

general signal processors 1-4 thru 1-7, 2-9 thru 2-12, 4-1, 4-17, 4-21,
4-34-35, 4-41,4-58-59, 4-62, 4-70, 4-82, 4-89-90, 4-116

data flow managers...........coeveerenceniennnee 14, 1-6, 440 thru 441, 443
4-68,4-70, 4-73, 4-75

chip NaMING CONVENHONS.......ciimincritiiririrircireisee s ensssens 3-70
electrical Specifications...........c.cvuivivremieinieineie st 3-65
basic SPeCifiCAtioNSccccueeriririienerieeeie s ssressn s ressasas 3-65
general timing specificationscccouveeeieieeeninessintsescistneseeretescienes 3-65
functional desCriPtion ... enes 36
DOOt MOAE ...ttt esensnene 3-18
clock selection (external/internal)ccocovveeuvenevirevenensenecrinnenisennnns 3-8
data transfer Modes..........cccocvuvreininnininnesisiss s 3-15
input/output flag linescocvmriinirenieeeetenreenesessnne 3-19
INEMOTY INAP «.coovvinrieisnseisniessssssssessssssss s e sssssssssssssssssssssassssasssssssssssesss 3-10
Parallel POrt.........iecterrte ettt s s enenenes 3-11
parallel port TEGISterscceuvrivrirerserniessessessis st ssssssense 3-19
WatChdOg tHIMET ...ttt senee 3-18
I/O INLETTACES ..ottt sess st ness s aesrs s sasseaes 3-5
ACCESS POTL.euvieeririiuiteraitnrsessssesssssssssssassssssesssssssssssassasssssssssassssnsssssssses 3-52
access POTt INETfACEc.evevverereieretrernisistse et seresesensesenens 3-52

access POrt SIGNAIS ...t ssessesns 3-53

parallel interfaceoouiecrenriinssssessssessssssssssnsnne 3-12 thru 3-35
PTODE POTt ..ottt st sttt assns s sss s ssssssssnssssnsene 3-57
operation and cONfigurationcccvveeeeeeereseiseissessseenenennenes 3-58
CONfiguration registers..........ceoirerernerniessnssrsssesssss s sssssenenns 3-60

signal table..........coiiiieneriiee s 3-62

S (cont’d)

SETIAL INEETTACEooveeeereeerectctc ettt st sas e senenessnssaseas 3-36

serial port configuration registers.............cocueeevveneernerrnrernrennnnn. 3-38

serial iNput/OUtPUL POTLScueivucveecumeirsereseeisssesessens s saessens 341

serial interface Signals...........occvcueiueeuecenninncsensesssseseesseesenns 343

PIN CONfIGUTALION......cuiieiuiecernrrirtetseeeterer ettt ssesessesessssnsesssssssssesasassens 3-71
SPROCboard evaluation boardcccocevveeveceeereecrnennn. 2-3,2-13, 3-80, 3-93, 3-127
SPROCDboXx interface unitc.cceeevevemeveeeveeevereneeenenene. 1-13, 2-2, 2-3, 3-80, 3-87, 3-127
SPROCDbuUIld Utilityc.cueueiviriniriiirciececnericenesrersreeeseseneesesens 2-5, 3-78, 3-84, 3-123
SPROCcells function librarycccoeeeevnereererrerennn. 2-5, 3-84, 3-108, 3-124, 3-130
SPROCArive interfacecoeeevveveveeveveveeeceeressssnenns 2-5, 3-79, 3-84, 3-127 thru 3-129
COMMEANG TSt ...eeirerrnrerereirrtitnterre ettt tse s sea s e sossssesnsssssssnsnnsann 3-129
SPROCil filter design toolcoceeeeieennensureerrernrerinsesens 2-5, 2-13, 3-78, 3-84, 3-121
FIHET LYPES ettt e s s sasase e senmens 3-112, 3-121
SPROClab development systemccccccoeverernnnnn. 1-1, 1-9, 1-11, 1-13, 2-1, 2-2, 2-12,

3-75 thru 3-76, 3-102 thru 3-105, 3-107,
4-17,4-75, 4-82, 4-108, 4-117-118, 5-1

hardware
COMPONENESocurrrririirireietieenssentesesssnessressesessssssesesessassnns 3-80 thru 3-82, 3-87
CONfIGUIAIONS.ceevirriinerenrrrrreseretsnaesessesesessesessesessesens 3-80, 3-104 thru 3-105
evaluation board, see SPROCboard evaluation board
INSLALLAION ..evevereeierereeeerreeee et res e e eeetenesesssestenssessssesessnsnssssnsnnn 3-105
interface unit, see SPROCbox interface unit
recommended PC configuration................oeinncccinscecsserenianes 3-103
user-supplied eqUIPMENLt...........co.cvciiiciiiirciserissecreseessssssesesenns 3-103
software
COMPONENLS ..ottt b ssssrsssesessens 3-83 thru 3-85

converting a diagram/generating code, see SPROCbuild utility
downloading and debugging, see SPROCdrive interface
entering a diagram, see SPROCview graphical design interface
function library, see SPROCcells function library
filter design, see SPROCil filter design tool
microprocessor interface, see SPROClink microprocessor interface
OrCAD and VIEWIlogic design capture,
see SPROCview graphical design interface
simulator, see SPROCsim simulator
SYStem Shell...........coouiiriiiiiiceccere e sbesaens 3-83,3-107

7-14

S (cont’d)

SPROCIink microprocessor interfaceeoeeerreesesseusesssssessssns 3-79, 3-85, 3-125
SPROCSIM SIMUIALOT ...ooviueenieeiiieeeiiceeesereeseessessesessssessssssssssessssssssessssssssassenes 2-5, 3-137
SPROCview graphical design interfacec..cecoeeuecurcunennee 3-78, 3-83, 3-108, 3-120
OrCAD and VIEWIlogic design capturecccccucumcnreencusecnsissssusnns 3-120
T
teChNICAl SUPPOTt ..ot easese s s enssesesssnsnes 1-13,5-1
apPlications ASSISLANCEcccveieieirricriici ittt asesssssssesssssens 1-15
AOCUMENLAON.......ccv ettt et eae s s resesssaessessesesaessssssnes 1-13,5-5
field technical specialists............coceuueiiiiriicicincicis s snaes 1-13
SOftWAre UPAALeS..........covvuiurrtnit st sssasss s sssssssssssssassasnes 1-13
transfer fUNCHONS ... e 3-78, 3-122, 4-49, 4-80
v

VIEWIogic , see SPROCview graphical design interface

7-15

bishh_Alkof Aﬁ/ﬂ

Keith Allsop JimMagos §
Pictad dioen b

Scott Terry Montlick

/:ZZ /@Zﬂ - izl M Al
Chatik nldj Chester, owickKi..
é{zz/@/@f TrF ()A),w/,

Ken Brizel Jack O'Donnell

I, M T2l 7%l st

Joffathan Chandross Paul Pe@vullanoF QZ

Sam Phllllp

Karen,Champign ,
‘ i . ﬁ 7 %
Tony Curran Dick Randlett A@%m@

Jeff Robmson
/ /@‘\/‘\-

- :7/i —~

Katl{y Geene

Michael Gillis . . Z% Salata

Keith Rouse

;
l’?dldzf\ C”mkm/ ’D??AMO =
— — . S i & e

reeNwood \Sieve Scott
S N W et

Payl Jordan Frank Sgammato

At) A s

Steve Shaslow

W sne T B

Andy Krassowski . /// Terri Swa'rfz

/@14'47////7 / %/ K u&tf

iz B)

EdLee * Bernie Witkosky

Retail $4.95

Star Semiconductor Corp,
25 Independence Boulevard
Warren, NJ 07059

908.647.9400

DB1000-1/December. 1991 © Copyright 1991 Printed in the USA

